TY - CONF A1 - Wolf, A. T. A1 - Recknagel, Christoph A1 - Wenzel, Norman A1 - Sitte, S. T1 - Structural Silicone Glazing: Life Expectancy of more than 50 Years? N2 - Structural Silicone Glazing (SSG) is a curtain walling method that utilizes silicone sealants to adhere glass, ceramic, metal or composite panels to supporting framing members by means of a peripheral adhesive joint. In SSG curtain walls, silicone sealants serve not only as a weather seal, but also act as a structural bonding element, eliminating the need for exterior retainers and covers. The paper discusses some essential findings of two recent research studies on the durability and service life of structural silicone glazing sealants and structures. The first study demonstrates, that specimens of a first generation 2-part silicone sealant taken from a SSG façade after 23+2 years of real life successfully passed the European ETAG002-1 performance criteria for residual strength. In a second study, a new performance-based durability test method was developed in partnership with the Federal Institute for Materials Research Berlin/Germany (BAM). This method is based on simultaneously exposing system test specimens to artificial weathering and complex, multiaxial mechanical loadings. 2-part structural silicone sealants of the first and of the second generation where subjected to this test, which is considered to correspond to an anticipated service life of 50 years. T2 - Glass Performance Days 2017 CY - Tampere, Finland DA - 28.06.2017 KW - Structural Sealant Glazing KW - Silicone adhesive KW - Durability KW - Climatic simulation KW - Artificial weathering KW - Mechanical loading PY - 2017 SN - 978-952-5836-06-6 SP - 338 EP - 345 PB - Glaston Finland Oy CY - Tampere, Finland AN - OPUS4-41288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Weise, Frank A1 - Müller, Renate A1 - Recknagel, Christoph A1 - Rudolphi, Reinald A1 - Vater, Ernst-Joachim T1 - Thermodynamische Analyse japanischer Straßenbeläge zur Minderung des Heat-Island-Phänomens T2 - Fachtagung "Sonderkapitel aus dem Brücken- und Ingenieurbau" CY - Berlin, Deutschland DA - 2003-10-21 PY - 2003 SN - 3-86509-043-5 SP - 19 EP - 27 PB - Wirtschaftsverl. NW, Verl. für neue Wissenschaft CY - Bremerhaven AN - OPUS4-2730 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigel, Sandra A1 - Recknagel, Christoph T1 - FTIR-Charakterisierung von Bitumen - Möglichkeiten und Chancen N2 - Das erdölstammige Bindemittel Bitumen weist eine so komplexe Struktur auf, dass diese mit den derzeit eingesetzten Verfahren nur eingeschränkt erfasst werden kann. Eine innovative und vielversprechende Möglichkeit bietet in diesem Zusammenhang die FTIR-Spektroskopie in Kombination mit einer chemometrischen Auswertung, mit der schnell und einfach Aussagen über die Zusammensetzung sowie verschiedenste physikalische und chemische Eigenschaften von bitumenhaltigen Materialien möglich werden. KW - Bitumen KW - FTIR KW - Chemometrie KW - Multivariate Analysemethoden KW - Charakterisierung KW - Identifizierung von Additiven PY - 2021 SN - 1618-8357 SP - 42 EP - 49 PB - ALPHA Informationsgesellschaft mbH CY - Lampertheim AN - OPUS4-53486 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigel, Sandra A1 - Gehrke, M. A1 - Recknagel, Christoph A1 - Stephan, D. T1 - Identification and quantification of additives in bituminous binders based on FTIR spectroscopy and multivariate analysis methods N2 - Bitumen is a crucial building material in road construction, which is exposed to continuously higher stresses due to higher traffic loads and changing climatic conditions. Therefore, various additives are increasingly being added to the bitumen complicating the characterisation of the bituminous binder, especially concerning the reuse of reclaimed asphalt. Therefore, this work aimed to demonstrate that the combination of Fourier transform infrared (FTIR) spectroscopy with attenuated total reflexion (ATR) technique and multivariate evaluation is a very wellsuited method to reliable identify and quantify additives in bituminous binders. For this purpose, various unmodified and modified binders, directly and extracted from laboratory and reclaimed asphalts, were investigated with FTIR-ATR spectroscopy. The determined spectra, pre-processed by standard normal variate (SNV) transformation and the determination of the 1st derivation, were evaluated using factor Analysis (FA), linear discriminant analysis (LDA) and partial least square regression (PLSR). With this multivariate evaluation, first, a significant model with a very high hit rate of over 90% was developed allowing for the identification of styrene-butadiene copolymers (SBC), ethylene-copolymer bitumen (ECB) and different waxes (e.g. amide and Fischer-Tropsch wax) even if the additives do not show any additional peaks or the samples are multi-modified. Second, a quantification of the content is possible for SBC, ECB, and Amide wax with a mean error of RMSE B 0.4 wt% and a coefficient of determination of R2[90%. Based on these results, FTIR identification and quantification of additives in bituminous binders is a very promising method with a great potential. KW - Bituminous binders KW - FTIR-ATR KW - Multivariate evaluation KW - Identification and quantification of additives KW - Polymers KW - Waxes PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534877 VL - 54 IS - 4 SP - 1 EP - 9 PB - Springer AN - OPUS4-53487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph A1 - Smales, Glen Jacob T1 - Structural silicone sealants after exposure to laboratory test for durability assessment N2 - During the service life of structural sealant glazing (SSG) facades, the loadbearing capacity of the silicone bonds needs to be guaranteed. Laboratory Tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical Analysis (DMA) confirms a reduction in the dynamic modulus of exposed Silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants. KW - Aging KW - Analytical methods KW - Fatigue KW - Silicone elastomer KW - Structural sealant glazing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527217 VL - 138 IS - 35 SP - 50881 PB - Wiley AN - OPUS4-52721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph T1 - Test methodology for performance assessment of structural sealant glazing systems at superimposed mechanical and climatic loading N2 - Reliable performance of structural sealant glazing (SSG) systems is necessary to utilise advantages of SSG in glass facades. Conventional durability assessment of structural sealant joints is based on separated weathering tests and empirical fatigue testing. This work presents a new test methodology for performance assessment of SSGjoints at simultaneous weathering and two-dimensional mechanical loading. The climatic and mechanical load function were derived from common loading scenarios according to a worst case approach. A System test specimen, resembling a common SSG-joint, was exposed to 24 h of combined loading in a custom-designed test facility. From the recorded mechanical system response, characteristic parameters were evaluated to assess the performance of the system at varying climatic and mechanical conditions. These experimental results reveal effects of ambient conditions, previous loading and deformation Amplitude peaks on the system response. The proposed test methodology opens up for new performance-related approaches in durability testing. KW - Structural sealant glazing KW - Performance assessment KW - Durability testing KW - Hysteresis measurement KW - Superimposed loading PY - 2019 U6 - https://doi.org/10.1016/j.polymertesting.2019.106030 SN - 0142-9418 VL - 79 SP - 106030, 1 EP - 15 PB - Elsevier AN - OPUS4-48871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph T1 - Durability Assessment of Structural Sealant Glazing Systems applying a Performance Test Method N2 - During the service life of a Structural Sealant Glazing (SSG) facade, its silicone bond is exposed to climatic, chemical, and mechanical loads. While current durability assessment methods schedule separate test programmes for accelerated weathering and fatigue, the presented test applies mechanical loading and weather cycling simultaneously to simulate 50 years of use. Specifically designed medium-scale system specimens resemble a common SSG-bond. Displacement-controlled sinusoidal load cycles in two load directions subject these specimens to tensile, compression and shear loads. Weathering comprises temperature and humidity cycles, UV-radiation, and application of water and detergent. During testing, the forces transmitted by the system specimens are continuously measured for performance assessment. The resulting system response reveals mechanical performance characteristics like elastic moduli and dissipated energies which decrease during exposure, indicating stress relaxation and degradation. Two common structural sealants were tested. After testing, sections of the system specimens were subjected to tensile and shear tests for mechanical characterisation. Strengths and moduli are notably reduced by combined loading compared to those of reference and weathered specimens. Hardness and visual inspections of the bond correlate with the performance and bond characteristics. The approach introduced in this article provides a basis for life cycle assessment of SSG-systems. KW - Structural sealant glazing KW - Cyclic weathering KW - Mechanical loading KW - Artificial ageing KW - Durability assessment PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519172 VL - 98 IS - 5 SP - 464 EP - 487 PB - Taylor & Francis Group AN - OPUS4-51917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vater, Ernst-Joachim A1 - Recknagel, Christoph ED - Petit, C. T1 - Bond strength and crack bridging behaviour of bridge deck surfacings for concrete bridges N2 - The operational principle for today's bridge deck surfacings is a strong and durable bond between all layers of the pavement and the concrete structure under all loads. A strong bond helps to ensure the desired safety level against water penetration. But in use there is a strong loading of the bond by crack development in the structure or pavement and its dynamical movement. To ensure the sealing function of the bridge deck surfacing over the time its waterproofing has to show a durable crack bridging ability. With it the useful life of the bridge deck surfacing is essentially determined. To characterise the influences on a durable bond strength and crack bridging ability of waterproofings special research and tests were realised in the BAM. From the test results it is possible to detect suitable waterproofing layers and differences in durability. Tensile fatigue strength and other mechanical features seems to be special suited material characteristics to describe the crack bridging behaviour of waterproofing layers. T2 - 5th International RILEM Conference on Cracking in Pavements CY - Limoges, France DA - 2004-05-05 PY - 2004 UR - http://www.rilem.net/fiche.php?cat=conference&reference=pro037-062 SN - 2-912143-47-0 IS - 37 SP - 521 EP - 528 PB - RILEM Publications CY - Bagneux AN - OPUS4-11873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - van Beek, F. A1 - Kuijper, P. A1 - Voskuilen, J. A1 - Hean, S. A1 - Recknagel, Christoph A1 - Mookhoek, S. D. A1 - van Vliet, D. T1 - Guidlines for flexible joint transition systems RTD 1007-4:2020 N2 - Flexible joint transition systems in the form of bituminous joint transitions, type 4.1a according to RTD1007-1, have been used in the Netherlands with varying success. The lifespan in practice was found to vary greatly: between 1 and 5 years. This is too short a lifespan in relation to the lifespan of the layers of asphalt pavement. Ideally, the replacement of these bituminous joint transitions should take place simultaneously as the maintenance of the asphalt layers. In the meantime, research has been carried out nationally and internationally into improving the life span of bituminous joint transitions. In Germany and Switzerland, the regulations have been shown to lead to a life span of more than 10 years. On this basis, ETAG032-3 was established in the context of EOTA in 2013. In a competition "Silent sustainable joint transitions" held by the Dutch Directorate-General for Public Works and Water Management in the period 2007-2012, three flexible bituminous joint transitions have already been tested, two of which were ultimately found to be suitable. These have been included in the multi-choice matrix (RTD 1007-1) as concept 4.1b (anchored bituminous joint transition) and 4.1c (unanchored bituminous joint transition with stretch-spreading inlay and poured asphalt edge beams). Monitoring these joint transitions in practice over the past 8 years has shown that the desired life span is achievable with these improved joint transitions. It is expected that the improvement in life span achieved abroad can also be realised in the Netherlands if several aspects specific to the Netherlands are taken into account:  For large parts of the Dutch main road network, the traffic intensity of 500,000 heavy vehicles per year assumed in the ETAG032-3 is insufficient. This is a factor 4 to 5 higher on the busiest main roads in the Netherlands.  On 90% of the Dutch main road network, in contrast to countries such as Germany and Switzerland, an open layer (ZOAB (zeer open asfaltbeton [very open asphalt concrete])) is used.  In the Netherlands, in contrast to countries such as Germany and Switzerland, bridges and viaducts are made on a large scale of prefabricated beams and 'floating' support systems that consist entirely of rubber supports that can be deformed all-round. Such constructions have a less favourable, high-frequency deformation behaviour under traffic load.  In Germany and Switzerland, a minimum joint mass temperature of -20 °C is assumed to test bituminous joint transitions. For the Netherlands, -15 °C is assumed, which has a favourable effect. The present second version of RTD 1007-4 is a guideline for the development and realisation of a new generation of more durable flexible joint transitions with a minimum design life of 10-15 years and is a guideline for contractors to demonstrate that a flexible joint transition system meets the requirements as set out in the Directorate-General for Public Works and Water Management guideline RTD 1007-2. KW - Technical rule KW - Approval requirements KW - Extension joints KW - Highway pavements PY - 2020 VL - Version 2.0 SP - 1 EP - 77 CY - Rijkswaterstaat AN - OPUS4-54599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spitzer, Stefan A1 - Recknagel, Christoph A1 - Said, Samir A1 - Ziegler, Fred T1 - BAM-Monitoringkompetenz am Beispiel des Projekts INFUSE-SensoJoint N2 - Datenmanagement der realen Beanspruchungen von Betonautobahnen von der definierten Datenerfassung über Datenverwaltung, Datenübertragung bis zur Datenauswertung T2 - Workshop Digitaler Zwilling CY - BAM, Berlin, Germany DA - 04.06.2018 KW - Bitumen KW - Betonautobahn KW - Monitoring KW - Innovative Messtechnik PY - 2018 AN - OPUS4-45020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -