TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph A1 - Smales, Glen Jacob T1 - Structural silicone sealants after exposure to laboratory test for durability assessment JF - Journal of Applied Polymer Science N2 - During the service life of structural sealant glazing (SSG) facades, the loadbearing capacity of the silicone bonds needs to be guaranteed. Laboratory Tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical Analysis (DMA) confirms a reduction in the dynamic modulus of exposed Silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants. KW - Aging KW - Analytical methods KW - Fatigue KW - Silicone elastomer KW - Structural sealant glazing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527217 DO - https://doi.org/10.1002/app.50881 VL - 138 IS - 35 SP - 50881 PB - Wiley AN - OPUS4-52721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigel, Sandra A1 - Gehrke, M. A1 - Recknagel, Christoph A1 - Stephan, D. T1 - Identification and quantification of additives in bituminous binders based on FTIR spectroscopy and multivariate analysis methods JF - Materials and Structures N2 - Bitumen is a crucial building material in road construction, which is exposed to continuously higher stresses due to higher traffic loads and changing climatic conditions. Therefore, various additives are increasingly being added to the bitumen complicating the characterisation of the bituminous binder, especially concerning the reuse of reclaimed asphalt. Therefore, this work aimed to demonstrate that the combination of Fourier transform infrared (FTIR) spectroscopy with attenuated total reflexion (ATR) technique and multivariate evaluation is a very wellsuited method to reliable identify and quantify additives in bituminous binders. For this purpose, various unmodified and modified binders, directly and extracted from laboratory and reclaimed asphalts, were investigated with FTIR-ATR spectroscopy. The determined spectra, pre-processed by standard normal variate (SNV) transformation and the determination of the 1st derivation, were evaluated using factor Analysis (FA), linear discriminant analysis (LDA) and partial least square regression (PLSR). With this multivariate evaluation, first, a significant model with a very high hit rate of over 90% was developed allowing for the identification of styrene-butadiene copolymers (SBC), ethylene-copolymer bitumen (ECB) and different waxes (e.g. amide and Fischer-Tropsch wax) even if the additives do not show any additional peaks or the samples are multi-modified. Second, a quantification of the content is possible for SBC, ECB, and Amide wax with a mean error of RMSE B 0.4 wt% and a coefficient of determination of R2[90%. Based on these results, FTIR identification and quantification of additives in bituminous binders is a very promising method with a great potential. KW - Bituminous binders KW - FTIR-ATR KW - Multivariate evaluation KW - Identification and quantification of additives KW - Polymers KW - Waxes PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534877 DO - https://doi.org/10.1617/s11527-021-01763-1 VL - 54 IS - 4 SP - 1 EP - 9 PB - Springer AN - OPUS4-53487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -