TY - JOUR A1 - Ramos, I. I. A1 - Carl, Peter A1 - Schneider, Rudolf A1 - Segundo, M. A. T1 - Automated lab-on-valve sequential injection ELISA for determination of carbamazepine N2 - The development of an automated miniaturized analytical system that allows for the rapid monitoring of carbamazepine (CBZ) levels in serum and wastewater is proposed. Molecular recognition of CBZ was achieved through its selective interaction with microbeads carrying anti-CBZ antibodies. The proposed method combines the advantages of the micro-bead injection spectroscopy and of the flow-based platform lab-on-valve for implementation of automatic immunosorbent renewal, rendering a new recognition surface for each sample. The sequential (or simultaneous) perfusion of CBZ and the horseradish peroxidase-labelled CBZ through the microbeads is followed by real-time on-column Monitoring of substrate (3,30,5,50-tetramethylbenzidine) oxidation by colorimetry. The evaluation of the initial oxidation rate and also the absorbance value at a fixed time point provided a linear response versus the logarithm of the CBZ concentration. Under the selected assay conditions, a single analysis was completed after only 11 min, with a quantification range between 1.0 and 50 µg L⁻¹. Detection of CBZ levels in undiluted wastewater samples was feasible after a simple filtration step while good recoveries were attained for spiked certified human serum, analyzed without sample clean-up. KW - Automation KW - Bead injection spectroscopy KW - Human serum KW - Microparticles KW - Therapeutic Drug Monitoring KW - Wastewater PY - 2019 U6 - https://doi.org/10.1016/j.aca.2019.05.017 SN - 0003-2670 VL - 1076 SP - 91 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-48317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramos, I. I. A1 - Carl, Peter A1 - Schneider, Rudolf A1 - Segundo, M. A. T1 - Automated bead-based immunoassay for the determination of carbamazepine in wastewater N2 - The improvement of immunoanalytical methods for the determination of pharmaceuticals in wastewaters is a crucial yet challenging endeavor. In this work, the development of an automated miniaturized ELISA based on micro-Bead Injection Spectroscopy (μ-BIS) [1] for the determination of carbamazepine, a widely employed anti-epileptic drug and emergent pollutant [2], was pursued. The experimental workflow comprised the offline functionalization of Sepharose beads with specific anti-CBZ antibodies via affinity immobilization using protein G, and 3 online steps inside the microfluidic analyzer lab-on-valve (LOV): I) packing of the bead column into the detection unit; II) sequential percolation of sample and a CBZ competitor- labeled with horseradish peroxidase (tracer) through the bead column; and III) on-column colorimetric detection employing the enzyme substrate 3,3’,5,5’-tetramethylbenzidine. After each analysis, the bead column was discarded, and the flow cell was washed before receiving new beads. The elimination of manual washing steps is a novel feature compared to batch-wise ELISA, making the method less error-prone and therefore more robust. The replacement of the solid support prevents memory effects and cross-contamination between runs. The use of microparticles as solid support for the molecular recognition elements accounts for high area-to-volume ratios, and low molecular diffusion distances. For that reason, time-to-result was reduced from several hours to less than 10 min. The consumption of reagents was also very low. For instance, only ca. 200 μg of solid support and 900 ng of anti-CBZ antibody were required per determination. At last, the versatility of the LOV platform offers the possibility of adapting the assay to other relevant pharmaceuticals and anthropogenic markers in water. Acknowledgements: Inês I. Ramos thanks FCT (Fundação para a Ciência e a Tecnologia) and POPH (Programa Operacional Potencial Humano) for her grant (SFRH/BD/97540/2013). This work received financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC - Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/QUI/50006/2013. Financial support from Deutscher Akademischer Austauschdienst and from Fundação das Universidades Portuguesas under the protocol CRUP-DAAD (Ações Integradas Luso-Alemãs nºE-20/16) is also acknowledged. [1] Gutzman, Y.; Carrol, A. D. Analyst 2006, 131, 809. [2] Murray, K. E.; Thomas, S. M.; Bodour, A. A. Environ. Pollut. 2010, 158, 3462. T2 - ANALÍTICA – 2018 CY - Porto, Portugal DA - 26.03.2018 KW - Lab-on-valve KW - Emerging pollutants KW - Immunoassay KW - Automation PY - 2018 AN - OPUS4-44592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramos, I. I. A1 - Carl, Peter A1 - Barreiros, L. A1 - Magalhães, L. M. A1 - Reis, S. A1 - Schneider, Rudolf A1 - Segundo, M. A. T1 - Lab-on-valve platform for real-time automated immunosensing N2 - The talk presents results of collaborative work on implementing antibody-based, immunoanalytical methods on a lab-on-valve platform. T2 - Biosensors 2018 CY - Miami, FL, USA DA - 12.07.2018 KW - Antikörper KW - Immunoassay KW - Automation PY - 2018 AN - OPUS4-47049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -