TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -