TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516288 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Ciornii, Dmitri A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. A1 - Howe, T. A1 - Vyas, N. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of the Morphology on the Functionalization of Graphene Nanoplatelets Analyzed by Comparative Photoelectron Spectroscopy with Soft and Hard X-Rays N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. However, the “what is my material” barrier hinders further commercialization. X-ray photoelectron spectroscopy (XPS) is considered as a method of choice for the determination of the elemental and chemical composition. In this work the influence of the morphology of graphene particles on the XPS results is studied and investigated as a function of X-ray energy, using conventional XPS with Al K𝜶 radiation and hard X-ray photoemission spectroscopy (HAXPES) using Cr K𝜶 radiation. Thereby, the information depth is varied between 10 and 30 nm. For this purpose, two commercial powders containing graphene nanoplatelets with lateral dimensions of either ≈100 nm or in the micrometer range are compared. These larger ones exist as stack of graphene layers which is inspected with scanning electron microscopy. Both kinds of particles are then functionalized with either oxygen or fluorine. The size of the graphene particles is found to influence the degree of functionalization. Only the combination of XPS and HAXPES allows to detect the functionalization at the outermost surface of the particles or even of the stacks and to provide new insights into the functionalization process. KW - Functionalized graphene KW - Hard-energy X-ray photoelectron spectroscopy KW - X-ray photoelectron spectroscopy PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-578860 SN - 2196-7350 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-57886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 SN - 1862-6319 VL - 220 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579818 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -