TY - CONF A1 - Radnik, Jörg T1 - Morphological and surface analytical long-term investigations of a CH3NH3PbI3/TiO2 perovskite solar cell N2 - Long-term investigations over 20 weeks of a organic-inorganic hybrid solar cell with SEM/EDX and XPS will be presented. T2 - Kratos User Meeting 2017 CY - Stuttgart, Germany DA - 17.10.2017 KW - Perovskite solar cell KW - SEM with EDX KW - XPS PY - 2017 AN - OPUS4-42626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - XPS at BAM - Some insights into our activities N2 - Some examples will be given showing the application of XPS in different fields, like polymers, nanoparticles, solar cells and inorganic thin films. T2 - Besuch beim GFZ Potsdam CY - Potsdam, Germany DA - 18.05.2018 KW - XPS KW - Surface analytics KW - Nanoparticles KW - Polymers KW - Solar cells PY - 2018 AN - OPUS4-44981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analysis of Nanoparticles N2 - The determination of the thickness and composition of the coating is crucial for the understanding of the properties of nanoparticles. Four different approaches will be presented: (i) numerical methods, (ii) descriptive formulae, (iii) the simulation of spectra with Monte-Carlo methods, and (iv) inelastic background analysis. The advantages and limits of these methods will be discussed. T2 - XPS Workshop CY - Teddington, United Kingdom DA - 14.07.2025 KW - Numerical simulation KW - Emperical formulae KW - Simulation KW - Inelastic background analysis PY - 2025 AN - OPUS4-63732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Energy-resolved x-ray photoelectron spectroscopy measurements on the concentration profile of thin blended poly(vinyl methyl ether)/polystyrene films N2 - The composition of thin films of polymer blends in vertical direction is still under discussion. For explaining the thickness dependence of some properties like the thermal glass transition temperature, a three-layer model has been introduced consisting of an adsorbed layer with a reduced segmental mobility at the substrate, a bulk-like layer in the middle of the film and an outermost surface layer with a higher molecular mobility. X-ray photoelectron spectroscopy (ER-XPS) measurements with a varying excitation energy from 400 eV to 1486.6 eV and, herewith, an information depth from 1.5 nm to 10 nm were performed at PVME/PS films with compositions of 25/75 wt% and 50/50 wt% and thicknesses between 15 nm and 190 nm. As expected, it was found that the PVME concentration decreases with increasing information depth. Secondly, a complex correlation between the PVME concentration at the surface and the film thickness was found. The PVME concentration increases with decreasing film thickness until a maximum at 30 nm. For thinner films, the PVME concentration decreases. These data agree with previous investigations obtained with specific heat spectroscopy. We thank BESSY II (HZB) for the allocation of beamtime at the HE-SGM beamline and for technical support. DFG (Project number 124846229) is acknowledged for financial support. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities (SNI2022) CY - Berlin, Germany DA - 05.09.2022 KW - X-ray photoelectron spectroscopy KW - Miscible polymer films KW - Depth profiling PY - 2022 AN - OPUS4-55654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Reliable Chemical Characterization Protocols for Industrial Graphene-Related Materials N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. Promising opportunities for applications are discussed in different field like electronics and optoelectronics, detection, and sensing devices, biosystems or chemical and environmental corrosion inhibition. Here, functionalization with elements like oxygen, nitrogen or fluorine can broaden the application, for example in composite materials. However, lack of generally accepted operation procedures hinders the commercialization, the so-called “what is my material” barrier. Therefore, first efforts were done to develop common, reliable, and reproducible ways to characterize the morphological and chemical properties of the industrially produced material. In this contribution, our efforts in the development of reliable chemical characterizations protocols for functionalized graphene are presented. An ISO standard for the chemical characterization of graphene-related (GRM) is under development with X-ray photoelectron spectroscopy (XPS) having a prominent role. With its information depth of around 10 nm, which is the similar length scale as the thickness of particles of 2D materials consisting of a few monolayers, XPS seems to be highly suitable for the quantitative analysis of (functionalized) GRM. Thereby, different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. Furthermore, different morphologies like stacks of graphene layers (left figure) or irregular particles (right figure) lead to different analysis results for the chemical composition. For the validation of the quantification with XPS and the further development of standards an international interlaboratory comparison was initiated under the head of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results are reported showing the suitability of the protocols. Finally, the XPS results are compared with the elemental composition results obtained after quantification with energy-dispersive X-ray spectroscopy (EDS) as a fast analytical method which is usually combined with electron microscopy. T2 - nanoSAFE 2023 CY - Grenoble, France DA - 05.06.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - An interlaboratory comparison on measuring the chemical composition of functionalized graphene nanoplatelets N2 - The results of the international interlaboratory comparison ""Chemical Composition of functionalized graphene with X-ray photoelectron spectroscopy (XPS) under the auspice of VAMAS TWA 2 (Surface Chemical Analysis) will be presented. T2 - Kratos German User Meeting 2023 CY - Berlin, Germany DA - 25.10.2023 KW - Graphene KW - Interlaboratory Comparison KW - X-ray photoelectron spectroscopy PY - 2023 AN - OPUS4-58683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Synchrotron radiation as a tool in applied catalytic research N2 - Synchrotron Radiation with its high intensity and the opportunity to tune the wavelength offers unique possibilities to investigate real catalysts, even under industry-like conditions. A good example is a XAFS study performed at supported Ni catalysts used for the dimerization of butene at elevated temperature and pressure. Another example are investigations at titania supported Pd based catalyst elucidating the role of co-components (e.g. Sb, Co, Mn and Au) which are necessary to get the desired promising performance in the gas phase acetoxylation of toluene to benzyl acetate, an environmentally benign alternative for the conventional process using chlorine. Furthermore, investigations about the redox properties of different Cu catalysts will be presented. It could be shown that the redox properties of Cu have a great impact on the performance of such catalysts, not only in some gas phase reactions, but also in photocatalytic applications, e.g. water splitting. T2 - EMIL Seminar CY - Berlin, Germany DA - 23.01.2017 KW - Catalysis KW - Synchrotron radiation KW - Nanochemistriy PY - 2017 AN - OPUS4-39026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Characterization of functionalized graphene particles with comparative XPS/HAXPES investigations N2 - The different chmemistry of graphitic nanoplatelets between the outermost surface and the bulk of the samples was investigated with comparative XPS/HAXPES measurements. T2 - PHI User Meeting CY - Grenoble, France DA - 18.04.2023 KW - X-ray photoelectron spectroscopy KW - Hard-energy X-ray photoelectron spectroscopy KW - graphene related 2D materials PY - 2023 AN - OPUS4-57649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Redox properties of Cu ions in molecular sieves N2 - Molecular sieves as materials with defined pores offer new opportunities in the preparation of nanostructured materials for different applications in chemistry, medicine and biology. Typical examples for such materials are zeolites, porous glass, different silicas and active carbon. Introducing transition metal ions in such materials can widen the possibilities of these materials in terms of chemical activity. Especially, the opportunity to tailor the redox properties of the transition metal ions by varying the location of the ion in the sieves is a promising way to obtain catalysts with the desired properties. For this purpose, Cu2+ ions were introduced into a SAPO-5 (silicoaluminaphosphate) by a hydrothermal method and by impregnation. As expected, the different preparation methods led to different locations of the Cu2+ ions: by the hydrothermal method the ions were incorporated in the SAPO-5 framework, by impregnation mononuclear Cu species randomly distributed in the pores of the support or CuO particles were formed depending on the Cu amount. These locations could be determined by Extended X-ray Absorption Fine Structure and Anomalous Small-Angle X-ray Scattering investigations. For investigating the redox properties of the Cu2+ ions the differently prepared sample were treated in Ar and H2 atmosphere until 550°C. X-ray Photoelectron Spectroscopy was performed to study the valence states of Cu after each of such treatment. For a definite determination of the valence states, both Cu 2p and Cu LMM spectra must be recorded. Cu2+ exhibits a clear chemical shift and a typical satellite structure in Cu2p spectra, but between mono- and zerovalent Cu a differentiation is not possible. On the other hand, these two species show a clear shift in the Auger spectra. Whereas in H2 atmosphere in any case metallic Cu was formed, the treatment in Ar showed significant differences between the samples. Cu2+ incorporated in the framework could not be reduced by this treatment. In contrast, the mononuclear Cu2+ species were reduced to stable Cu+. Likewise, the CuO nanoparticles were reduced to the monovalent Cu, but this species can be much more easily reoxidized in air. The consequences for the catalytic properties will be discussed. T2 - ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Catalysis KW - X-ray photoelectron spectroscopy KW - Nanostructured materials PY - 2017 AN - OPUS4-42323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Reliable measurements of the chemical composition of graphene-related 2D materials with X-ray photoelectron spectroscopy N2 - Graphene and related 2D materials (GR2Ms) are now entering an exciting phase of commercialization and use in products. Graphene nanoplatelets (GNPs) can be obtained in rather large quantities, but the properties of these industrially produced powders can vary depending on the production method, and even from batch to batch. Understanding and optimizing the surface chemistry of GNPs, modified through chemical functionalization processes is crucial, because it affects their dispersibility in solvents and matrices for the purpose of embedding them into real-world products. Therefore, reliable and repeatable measurements of the surface chemistry of functionalized GNPs are an important issue for suppliers as well as users of these materials. To address these concerns, international documentary ISO standards for measurement methodologies are under development which incorporate protocols that are becoming widely accepted in the community. Recently, it was shown that pelletizing led to lower average O/C atomic ratios than those measured for powders [1]. In another study, the influence of the morphology on the degree of functionalization was shown [2]. As expected, a higher degree of functionalization was detected for smaller GNPs. The functionalization was located at the outermost surfaces of the GNPs by comparing experiments using photoelectron with soft (Al Kα, 1.486 keV) and hard X-rays (Cr Kα, 5.405 keV). Therefore, it is important for those using GNPs to understand both the physical and chemical properties of these particles, when considering their use in different applications. The next step for reliable characterization protocols was the realization of an interlaboratory comparison under the auspices of VAMAS (Versailles Project on Advanced Materials and Standards) with 22 participating laboratories from all over the world. Samples of oxygen-, nitrogen-, and fluorine- functionalized GNPs were provided to the participants along with a measurement protocol. Participants were asked to prepare the samples as powders on a tape, powders in a sample holder recess, or as pellets. The lower measured O/C ratio reported for pelletized samples [1] was confirmed. The lowest scattering of the results was observed for the powders measured in the recess (Fig. 1). Furthermore, an influence of the humidity on the results was observed. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Interlaboratory Comparison KW - Functionalized graphene KW - Sample preparation PY - 2024 AN - OPUS4-60533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Investigation of Fe-Ni-O nanoparticles for water splitting N2 - This study investigates the effect of varying iron-to-nickel ratios on the catalytic performance of Fe-Ni oxide nanoparticles (NPs) for the oxygen evolution reaction (OER). Addressing the issue of high energy wastage due to large overpotentials in OER, we synthesized and characterized different NP catalysts with different Fe: Ni oxide ratios. Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) were employed to determine the morphology, elemental and phase composition of the NPs. Furthermore, in-depth profiling with X-rayPhotoelectron Spectroscopy (XPS) and Hard X-ray Photoelectron Spectroscopy (HAXPES) revealedthat iron predominantly exists as oxide, while nickel exhibits both metallic and oxidic forms depending on the Fe content. XPS indicated an enrichment of iron at the NP surface, whereas HAXPES and EDSdata agreed on the bulk stoichiometry. T2 - PhI European User Meeting 2025 CY - Eibelstadt, Germany DA - 29.04.2025 KW - Oxygen evolution reaction KW - In depth analysis KW - (Hard) X-ray Photoelectron Spectroscopy PY - 2025 AN - OPUS4-63334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Comprehensive characterization of Al-coated titania nanoparticles with electron microscopy and surface chemical analytics N2 - The wide use of nanoforms with at least one dimension below 100 nm in our daily life requires a detailed knowledge of their physicochemical properties which are needed for risk assessment or quality control. Therefore, a comprehensive characterization of these properties was considered as relevant including: chemical composition, crystallinity, particle size, particle shape, surface chemistry, and specific surface area (SSA). We want to discuss, how Scanning Electron Microscopy (SEM), Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) can contribute to gain comprehensive insights into the nature of the nanoparticles. SEM results provide the particle size and shape (distribution). A quick identification of the main chemical elements present in the sample can be obtained with EDS, whereas XPS allows a more detailed chemical identification of the small nanoparticles below 20 nm or of the near-surface region of larger particles. ToF-SIMS is even much more surface-sensitive and leads to a deeper understanding of the surface chemistry of the nanoparticles. As exemplary samples, two Al-coated TiO2 samples in nanopowder form were chosen from the JRC repository, capped either with a hydrophilic or a hydrophobic organic shell. A focus of our case study was to show, how reliable, reproducible and traceable data can be obtained. Therefore, each step in the workflow of sample investigation must be described in detail. For the most of these steps, well-established standards are available. Usually, the conditions of the particular measurements with each analysis method are saved as meta-data in the common file formats. But other factors like sample preparation and data reduction approaches may influence the result of the investigations in a significant manner and must be described often in a separate file (as a protocol) together with the data file. For sensitive materials like nanoobjects, the preparation of the sample influences the results crucially, e.g. measured as suspension or as powders. Furthermore, data reduction like selection of relevant peaks in spectra or particles in images, background subtraction, peak deconvolution, models for the quantification of the spectra must be considered in the interpretation of the results ideally with associated individual measurement uncertainties. Only a detailed description of all these factors allows to obtain a comprehensive characterization with reliable, reproduceable and traceable data. Examples of standardized procedures of measurement or on data reduction will be highlighted. We thank for the funding from the European Unions’s Horizon 2020 for the project NanoSolveIt (grant agreement No. 814572) and for the project NANORIGO (grant agreement No. 814530). T2 - E-MRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Scanning Electron Microscopy KW - Energy dispersive X-ray spectroscopy KW - Time-of-Flight Secondary Ion Mass Spectrometry KW - X-ray Photoelectron Spectroscopy KW - Titania nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527486 AN - OPUS4-52748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Surface Analysis and Context of the New HAXPES@BAM N2 - The Competence Centre nano@BAM is presenting a new X-ray Photoelectron Spectrometer – the HAXPES (XPS at hard energy) – for researching advanced materials at the nanoscale. With HAXPES detailed chemical information can now be gained not only from the first outermost nanometres of the sample surface, but also from deeper regions. Top international experts will share their knowledge and key findings on how to utilise HAXPES for exploring the surface of various advanced materials. Following the lectures, we will show you a short demo of the new instrument and answer your questions. T2 - Inauguration of the HAXPES@BAM - A new Hard-X-Ray Photoelectron Spectrometer CY - Online meeting DA - 25.01.2022 KW - XPS KW - HAXPES KW - Nano@BAM KW - Surface Analysis PY - 2022 UR - https://www.bam.de/Content/EN/Events/2022/2022-01-25-hapex.html AN - OPUS4-54377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Minimale Anforderungen an Referenzdaten anhand von Beispielen aus der Elektronenmikroskopie und Oberflächenanalytik N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und Oberflächenanalytik (EDX und XPS), die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) vorgestellt und diskutiert. T2 - Workshop "Referenzdaten" CY - Berlin, Germany DA - 13.03.2020 KW - Referenzdaten KW - Nanopartikel KW - Elektronenmikroskopie KW - Oberflächenanalytik KW - Standardarbeitsanweisung KW - SOP KW - Standardisierung PY - 2020 AN - OPUS4-50571 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach Task2.5 N2 - The final results of Task 2.5 "Optimization of sample preparation for characterization of ENPs using TOF-SIMS under real-life conditions (a.) UfZ: polymer template; b.) BAM: pressing of pellets)" were presented. T2 - ACEnano General Meeting CY - Amsterdam, The Netherlands DA - 05.03.2020 KW - Nanoparticles KW - ToF-SIMS KW - Preparation PY - 2020 AN - OPUS4-50572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Surface chemical analysis surface chemical analysis of cells and biofilms N2 - The status of the planned technical report "Surface characterization of biomaterials" will be presented. T2 - ISO TC201 Meeting CY - Online meeting DA - 05.09.2020 KW - X-ray photoelectron spectroscopy KW - X-ray spectroscopy KW - Biomaterials KW - Standardization PY - 2020 AN - OPUS4-51197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analytical & Characterisation Excellence in nanomaterial risk assessment: A tiered approach N2 - The work packages of the EU H2020 project ACEnano are presented and their activities in standardization and guidance for regulators and SMEs. T2 - ISO/TC 229 Strategy meeting CY - Online meeting DA - 10.11.2020 KW - Nanomaterials KW - Standardization KW - Risk assessment PY - 2020 AN - OPUS4-51611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Photoelectron spectroscopy N2 - A short introduction into the basics of Photoelectron Spectroscopy with the focus on surface sensitivity and applications is presented. T2 - Industrietreffen im Forschungs- und Innovationszentrum (FIZ) der BMW Group CY - Munich, Germany DA - 09.01.2018 KW - XPS KW - ESCA KW - Surface analytics PY - 2018 AN - OPUS4-43737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Introduction to photoelectronspectroscopy N2 - A short introduction to XPS/ESCA with the focus on nanoparticles and the preparation of such particles for the measurements T2 - Meeting of ACE Nano CY - Berlin, Germany DA - 18.02.2019 KW - ESCA/XPS KW - Nanoparticles KW - Preparation PY - 2019 AN - OPUS4-47437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Combining surface analytic and toxicity data for safer nanomaterials N2 - Nanomaterials are present in our everyday life. Paint coats, sunscreens, catalysts and additives for tyres are good examples for the use of such materials in mass-market products. The problem of the safety of nanomaterials is recognized as a problem for health and environment, which lead to the special registration of nanomaterials according to an annex of REACH as of 2020. But a great problem for the risk assessment of nanomaterials that several factors could influence the hazardous nature of them. Additional to composition, crystal structure, size and shape the surface properties of such particles belong to these parameters for risk assesment. The reason for the relevance of the surface is obvious: the smaller the particle, the higher is the share of the surface. Additionally, the surface is the region of the particle which interacts with the surrounding which is another crucial factor for the understanding the effect of a nanomaterial on health and environment. In the OECD Testing Programme on Manufactured Nanomaterials exists consequently an Endpoint 4.30 Surface Chemistry in Chapter 4. PHYSICAL AND CHEMICAL PROPERTIES. In summary, there is obviously a need for a correlation between surface chemical analytic data and toxicity. To fill in this gap, we present surface analytic results obtained with X-ray photoelectron spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry and correlate them with cytotoxic data gain by high-throughput screening experiments. It must be noted, that these experiments were done at the same set of titania materials taken from the JRC (Joint Research Centre of the European Union) Nanomaterials Repository. As material TiO2 was chosen due to its widespread use in consumer products, e.g. paint coats and sunscreens. With this new approach a better understanding of the influence of surface properties on the toxicity can be expected leading to a better risk assessment of these materials. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Risk assessment KW - Nanomaterials KW - Surface analytic KW - Toxicology PY - 2019 AN - OPUS4-49090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Elucidating core shell nanostructures with surface analytics N2 - XPS is a versatile tool for elucidating core shell structures. XPS can obtain information for organic compounds (polymer particle, organic coating ) which are hardly or not detectable with other Methods. XPS is an important tool for the risk assessement of nanoparticles T2 - Kratos German User Meeting CY - Online meeting DA - 26.05.2021 KW - Core-shell nanoparticles KW - X-ray photoelectron spectroscopy KW - Complementary methods PY - 2021 AN - OPUS4-52717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Elemental composition of an ionic liquid surface N2 - (1) First results show the suitability of IL as reference for quantification of XPS (at least for organic materials). (2) Different quantification methods lead to similar results (with a slight advantage for “background method”). (3)Promising reference material for a better understanding and traceable protocols for the quantification of organic materials with XPS. T2 - BIPM / SAWG Spring Meeting CY - Online meeting DA - 12.05.2021 KW - Ionic liquid KW - X-ray photoelectron spectroscopy KW - Quantification PY - 2021 AN - OPUS4-52688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ISO-G-Scope Standardisation of structural and chemical properties of graphene N2 - The objectives and tasks of the EMPIR project ISO-G-Scope are presented. The last results was shown. Esspecially, the interlaboratory comparison about XPS of functionalized graphene is presented. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Graphene KW - Standardization KW - Structural characterisation KW - Chemical composition PY - 2022 AN - OPUS4-54834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS Project A33: Chemical composition of functionalized graphene with X ray photoelectron spectroscopy (XPS) N2 - The results of the interlaboratory comparison about the chemical composition of functionalized graphene are presented. T2 - DIN Meeting NA 062-08-16 AA CY - Berlin, Germany DA - 25.05.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Correlating HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSE/CdS semiconductor quantum dots N2 - Controlling the thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield. This calls for a whole nanoobject approach. Moreover, the thickness of the organic coating remains often unclear. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. The results of the different methods match very well within the different measurement uncertainties. Additionally, results obtained with energy-resolved XPS using excitation energies between 200 eV and 800 eV are discussed with respect to a potential core/shell intermixing. Moreover, the future application potential of this approach correlating different sizing and structural methods is discussed considering the method-inherent uncertainties and other core/multi-shell nanostructures. T2 - E-MRS Fall Meeting CY - Online meeting DA - 20.09.2021 KW - Core-shell nanoparticles KW - Quantum dots KW - High-resolution transmission electron microscopy KW - X-ray Photoelectron Spectroscopy PY - 2021 AN - OPUS4-53365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Surface-functionalized organic and inorganic engineered nanomaterials (NMs) are widely applied in the life and materials sciences. NM performance depends on key factors such as particle size and shape, crystal phase, morphology, chemical composition, and surface chemistry, i.e., surface coatings, functional groups (FGs), and ligands.1 The latter controls their processability and interaction with the environment and largely their possible toxicity. Thus, methods for FG quantification are important tools for quality control of NM production processes and can foster the sustainable development of functional and safe(r) NMs. This underlines the importance of validated and standardized analytical methods for surface analysis and reference materials.2 This encouraged us to explore simple and versatile tools for quantifying common bioanalytically relevant FGs such as optical assays, electrochemical titration methods, quantitative nuclear magnetic resonance spectroscopy (qNMR), and X-Ray photoelectron spectroscopy (XPS) and to perform a first interlaboratory comparison (ILC) on surface FG quantification.3,4 In a follow-up ILC, BAM and NRC explored qNMR sample preparation, measurement, and data evaluation protocols for commercial and custom-made aminated SiO2 NPs with sizes of 20-100 nm, different amounts of surface amino FGs, and different porosity.5,6 First, the number of amino FGs accessible for a dye reporter was determined with a cost-efficient, automated optical fluorescamine assay. Then, qNMR workflows and protocols were stepwise fine-tuned. The qNMR ILC was complemented by joint XPS measurements. BAM also examined the applicability of fast and automatable potentiometric titrations to screen the total amount of (de)protonable FGs on aminated SiO2 NPs. Our results underline the need to evaluate protocols for FG quantification in ILCs and the advantages of multi-method characterization strategies for efficient method cross validation. T2 - Surface and Micro/Nano Analysis Working Group CY - Paris, France DA - 08.04.2025 KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nano KW - Particle KW - Surface analysis KW - XPS KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - QNMR KW - Potentiometry PY - 2025 AN - OPUS4-62969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Advanced Materials for the Energy Transition N2 - Advanced Materials are crucial for the sucess of the energy transition. 10 relevant advanced materials were chosen and their role for relevant technologies was analysed. Challenges regarding their safe and sustainable use are discussed. T2 - OECD WPMN SG Advanced Materials Teleconference CY - Online meeting DA - 30.09.2025 KW - Solar Cells KW - Advanced Carbon Materials KW - Fuel Cells KW - Batteries KW - Hydrogen Storage PY - 2025 AN - OPUS4-64306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -