TY - JOUR A1 - Cappella, Brunero A1 - Geuss, Markus A1 - Sturm, Heinz A1 - Heyde, M. A1 - Rademann, K. A1 - Spangenberg, T. A1 - Niehus, H. T1 - Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope N2 - We present dynamic plowing nanolithography on polymethylmethacrylate films, performed with a scan-linearized atomic force microscope able to scan up to 250 μm with high resolution. Modifications of the surface are obtained by plastically indenting the film surface with a vibrating tip. By changing the oscillation amplitude of the cantilever, i.e., the indentation depth, surfaces can be either imaged or modified. A program devoted to the control of the scanning process is also presented. The software basically converts the gray scale of pixel images into voltages used to control the dither piezo driving cantilever oscillations. The advantages of our experimental setup and the dependence of lithography efficiency on scanning parameters are discussed. Some insights into the process of surface modifications are presented. KW - Nanolithography PY - 2001 UR - http://rsi.aip.org/ U6 - https://doi.org/10.1063/1.1326053 SN - 0034-6748 SN - 1089-7623 VL - 72 SP - 136 EP - 141 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Cappella, Brunero A1 - Heyde, M. A1 - Ritter, C. A1 - Rademann, K. T1 - Dislocation of antimony clusters on graphite by means of dynamic plowing nanolithography N2 - Antimony clusters of different shapes and dimensions have been obtained by evaporating antimony on graphite. The dependence of the shape and dimensions of the particles on the evaporation parameters (effective layer thickness, temperature, pressure) is discussed. A characterisation of the different structures is presented. In particular, the decoration of graphite steps is discussed. Clusters have been dislocated by means of dynamic plowing nanolithography, both in vector and in image pattern mode. The dependence of the energy needed to dislocate a cluster on its dimensions and position is discussed. KW - Antimony clusters KW - Nanolithography PY - 2001 U6 - https://doi.org/10.1016/S0039-6028(00)01113-4 SN - 0039-6028 VL - 476 IS - 1-2 SP - 54 EP - 62 PB - Elsevier CY - Amsterdam AN - OPUS4-875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ritter, C. A1 - Schwarz, U.D. A1 - Stegemann, Bert A1 - Heyde, M. A1 - Rademann, K. T1 - Tribological properties of amorphous and crystalline antimony nanoparticles studied by SFM and TEM KW - Friction KW - Dissipation KW - Nanoparticle PY - 2005 SN - 0420-0195 SN - 0372-5448 SN - 0343-9216 VL - 40 IS - 02 SP - 475 EP - 476 CY - Bad Honnef AN - OPUS4-7679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ritter, C. A1 - Heyde, M. A1 - Stegemann, Bert A1 - Rademann, K. A1 - Schwarz, U.D. T1 - Moving adsorbed particles by scanning force microscopy: A new gateway to the study of nanoscale frictional properties T2 - 3rd ESF Nanotribology Workshop CY - Sesimbra, Portugal DA - 2004-09-18 KW - Friction KW - Nanoparticle KW - Manipulation KW - Dissipation PY - 2004 SP - 34 PB - ESF CY - Sesimbra AN - OPUS4-7680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichelbaum, M. A1 - Rademann, K. A1 - Müller, Ralf A1 - Radtke, Martin A1 - Görner, Wolf T1 - Zur Chemie des Goldes in Silicatgläsern: Untersuchungen zum nicht-thermisch aktivierten Wachstum von Goldclustern KW - Glas KW - Goldcluster KW - Nanophotonik PY - 2005 U6 - https://doi.org/10.1002/ange.200502174 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 117 IS - 48 SP - 8118 EP - 8122 PB - Wiley-VCH CY - Weinheim AN - OPUS4-7691 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Klobes, Peter A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Characterization of mechanochemically synthesized MOFs N2 - The compound MOF-14 (Cu3(BTB)2, BTB = 4,4',4''-benzenetribenzoate) was synthesized by ball milling and characterized by powder X-ray diffraction (XRD). The raw material was activated using an efficient single washing step to ensure a free pore access. Nitrogen adsorption measurements were carried out to determine the specific areas of the samples before and after activation. To interpret the activation process in terms of blocking effects in the micropore channels, NLDFT evaluations (Nonlocal Density Functional Theory) of the MOF-14 nitrogen isotherms were carried out. In connection with the appearance of additional hysteresis loops in the nitrogen isotherms, calculations of the mesopore size distribution were performed using the method of Barret, Joyner, and Halenda (BJH). The results are compared to those of a structurally analogue MOF, namely HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate). This comparison showed notable differences regarding the impact of the activation step on the formation of mesopores and their size distribution. KW - Metal-organic frameworks KW - Mechanochemistry KW - Gas adsorption KW - Specific surface area KW - MOF-14 PY - 2012 U6 - https://doi.org/10.1016/j.micromeso.2011.11.039 SN - 1387-1811 SN - 1873-3093 VL - 154 SP - 113 EP - 118 PB - Elsevier CY - Amsterdam AN - OPUS4-25597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kahlau, R. A1 - Gnutzmann, Tanja A1 - Emmerling, Franziska A1 - Rademann, K. A1 - Rössler, E.A. T1 - Quinaldine: Accessing two crystalline polymorphs via the supercooled liquid N2 - Quinaldine (2-methyl quinoline) is a liquid at room temperature, which can be supercooled to reach finally the glassy state. By heating the glass above the glass transition temperature Tg = 180 K the sample performs two subsequent transitions into, likewise, dielectrically active phases. Thus, the reorientational relaxations of these phases as well as the kinetics of the phase transitions can be tracked in a highly resolved way by dielectric spectroscopy. X-ray diffraction analysis clearly shows two structurally different crystalline phases in addition to the supercooled liquid. Calorimetric measurements support the notion of first order phase transitions, occurring irreversibly in the supercooled regime, and suggest that the intermediate crystalline phase is metastable, too. Analyzing the quite distinct dielectric relaxation strengths, we discuss the possible nature of the two crystalline phases. Additionally, a very similar behavior to quinaldine is observed for 3-methyl quinoline, indicating a broad field of polymorphism among the quinoline derivatives. KW - Calorimetry KW - Dielectric liquids KW - Dielectric relaxation KW - Glass transition KW - Liquid structure KW - Organic compounds KW - Polymorphism KW - Supercooling KW - X-ray diffraction PY - 2012 U6 - https://doi.org/10.1063/1.4738583 SN - 0021-9606 SN - 1089-7690 VL - 137 IS - 5 SP - 054505-1 - 054505-10 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simo, A. A1 - Polte, Jörg A1 - Pfänder, N. A1 - Vainio, U. A1 - Emmerling, Franziska A1 - Rademann, K. T1 - Formation mechanism of silver nanoparticles stabilized in glassy matrices N2 - In any given matrix control over the final particle size distribution requires a constitutive understanding of the mechanisms and kinetics of the particle evolution. In this contribution we report on the formation mechanism of silver nanoparticles embedded in a soda-lime silicate glass matrix. For the silver ion-exchanged glass it is shown that at temperatures below 410 °C only molecular clusters (diameter <1 nm) are forming which are most likely silver dimers. These clusters grow to nanoparticles (diameter >1 nm) by annealing above this threshold temperature of 410 °C. It is evidenced that the growth and thus the final silver nanoparticle size are determined by matrix-assisted reduction mechanisms. As a consequence, particle growth proceeds after the initial formation of stable clusters by addition of silver monomers which diffuse from the glass matrix. This is in contrast to the widely accepted concept of particle growth in metal–glass systems, in which it is assumed that the nanoparticle formation is predominantly governed by Ostwald ripening processes. PY - 2012 U6 - https://doi.org/10.1021/ja309034n SN - 0002-7863 SN - 1520-5126 VL - 134 IS - 45 SP - 18824 EP - 18833 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gnutzmann, Tanja A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Fast crystallization of organic glass formers N2 - An unusually fast crystallization of the organic glass former nifedipine has been observed. The crystallization process, starting from an amorphous film to crystalline material, was investigated by time resolved Raman microspectroscopy. The crystallization rates of the initially crystallizing metastable β-form are four orders of magnitude higher than those of previous studies. KW - Polymorphism KW - Raman spectroscopy KW - Crystallization KW - Nifedipine PY - 2012 U6 - https://doi.org/10.1039/c1cc16301a SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 48 SP - 1638 EP - 1640 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-27735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarfraz, Adnan A1 - Simo, A. A1 - Fenger, R. A1 - Christen, W. A1 - Rademann, K. A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Morphological diversity of caffeine on surfaces: needles and hexagons N2 - A systematic crystal morphology study on the pharmaceutical model compound caffeine has been conducted on different surfaces: silicon, silver, soda lime glass, and silver subsurface ion-exchanged soda-lime silicate (SIMO) glasses. The morphology of the solid caffeine deposits has been investigated using environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Needle-shaped caffeine crystals have been observed by drop-casting and also by applying the rapid expansion of supercritical solutions (RESS) technique using supercritical carbon dioxide. The aspect ratio of the crystalline needles typically vary between 10 and 100, but have been observed as large as 500. The XRD data of the RESS products indicate unambiguously the presence of the thermodynamically most stable polymorph of caffeine known as the β-form. Under defined conditions we observe a unique, surface-mediated morphology for caffeine crystals with nearly perfect hexagonal shape. The relative fraction of the hexagons was seen to strongly increase especially when SIMO glasses were used. These hexagons have a distinct upper size limit depending on the solvent and substrate being used. The size distribution analysis of the hexagons yielded an average perimeter of typically 10 µm. The mechanism of the formation process of this new hexagonal motif is explained in terms of the spinodal dewetting of the thin film of caffeine solution on the surface. KW - Caffeine KW - Silicon KW - Silver KW - Ion exchanged soda lime silicate glass KW - ESEM KW - AFM KW - X-ray diffraction KW - RESS KW - Carbon dioxide KW - Supercritical fluids PY - 2012 U6 - https://doi.org/10.1021/cg101358q SN - 1528-7483 VL - 12 IS - 2 SP - 583 EP - 588 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-25457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Som, T. A1 - Simo, A. A1 - Fenger, R. A1 - Troppenz, G.V. A1 - Bansen, R. A1 - Pfänder, N. A1 - Emmerling, Franziska A1 - Rappich, J. A1 - Boeck, T. A1 - Rademann, K. T1 - Bismuth hexagons: facile mass synthesis, stability and applications N2 - A unique direct electrodeposition technique involving very high current densities, high voltages and high electrolyte concentrations is applied for highly selective mass synthesis of stable, isolable, surfactant-free, single-crystalline Bi hexagons on a Cu wire at room temperature. A formation mechanism of the hexagons is proposed. The morphology, phase purity, and crystallinity of the material are well characterized by FESEM, AFM, TEM, SAED, EDX, XRD, and Raman spectroscopy. The thermal stability of the material under intense electron beam and intense laser light irradiation is studied. The chemical stability of elemental Bi in nitric acid shows different dissolution rates for different morphologies. This effect enables a second way for the selective fabrication of Bi hexagons. Bi hexagons can be oxidized exclusively to α-Bi2O3 hexagons. The Bi hexagons are found to be promising for thermoelectric applications. They are also catalytically active, inducing the reduction of 4-nitrophenol to 4-aminophenol. This electrodeposition methodology has also been demonstrated to be applicable for synthesis of bismuth-based bimetallic hybrid composites for advanced applications. KW - Bismuth KW - Hexagons KW - Dendrites KW - Single-crystal KW - Thermoelectric applications KW - Catalytic applications PY - 2012 U6 - https://doi.org/10.1002/cphc.201101009 SN - 1439-4235 VL - 13 IS - 8 SP - 2162 EP - 2169 PB - Wiley-VCH CY - Weinheim AN - OPUS4-26278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Eichelbaum, M. A1 - Rademann, K. A1 - Müller, Ralf A1 - Radtke, Martin A1 - Riesemeier, Heinrich A1 - Görner, Wolf T1 - Vom Atom zum Nanodraht: Kontrolliertes Wachstum von Edelmetall-Nanokristalliten in Kalk-Natron-Silikatglas T2 - 79. Glastechnische Tagung CY - Würzburg, Deutschland DA - 2005-05-23 KW - Glas KW - Metallnanocluster KW - Optische Eigenschaften PY - 2005 SN - 3-921089-43-3 SP - 15 Seiten PB - Deutsche Glastechnische Gesellschaft CY - Offenbach AN - OPUS4-7558 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Görner, Wolf A1 - Eichelbaum, Maik A1 - Matschat, Ralf A1 - Rademann, K. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich T1 - Non-destructive investigation of composition, chemical properties and structure of materials by synchrotron radiation PY - 2006 SN - 0007-1137 VL - 48 IS - 9 SP - 540 EP - 544 PB - British Institute of Non-Destructive Testing CY - Northampton AN - OPUS4-14186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichelbaum, M. A1 - Rademann, K. A1 - Weigel, W. A1 - Löchel, B. A1 - Radtke, Martin A1 - Müller, Ralf T1 - Gold-Ruby Glass in a New Light: On the Microstructuring of Optical Glasses with Synchrotron Radiation KW - Nanoparticles KW - Glasses KW - Synchrotron radiation KW - X-ray lithography KW - Surface plasmon resonance KW - Luminescence PY - 2007 SN - 0017-1557 VL - 40 IS - 4 SP - 1 EP - 5 CY - London AN - OPUS4-16432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Christen, W. A1 - Rademann, K. T1 - Tracing Coffee Tabletop Traces N2 - Crystallization processes under different conditions are of fundamental interest in chemistry, pharmacy, and medicine. Therefore, we have studied the formation of micro- and nanosized crystals using water-caffeine (1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione) solutions under ambient conditions as a relevant model system. When droplets of an aqueous caffeine solution evaporate and eventually dry on surfaces (glass, polystyrene, and polyester), stable “coffee tabletop” rings with a perimeter of typically 3 mm are formed after 20 to 50 min. Using a micro focus X-ray beam available at the BESSY µSpot-beamline, the fine structure of different caffeine needles can be distinguished. Unexpectedly, both crystal modifications (α- and β-caffeine) are present, but locally separated in these rings. Furthermore, AFM studies reveal the presence of even smaller particles on a nanometer length scale. To eliminate influences of surface irregularities from the crystallization process, acoustic levitation of liquid samples was employed. Such levitated droplets are trapped in a stable position and only surrounded by air. The solvent in an ultrasonically levitated drop evaporates completely, and the resulting crystallization of caffeine was followed in situ by synchrotron X-ray diffraction. In this case, the diffraction pattern is in accordance with pure α-caffeine and does not indicate the formation of the room temperature polymorph β-caffeine. Hence, our investigations open new vistas that may lead to a controlled formation of cocrystals and novel polymorphs of micro- and nanocrystalline materials, which are of relevance for fundamental studies as well as for pharmaceutical and medical applications. KW - Polymorphism KW - Crystallization KW - Acoustic levitation KW - Evaporation of droplets KW - µSpot KW - Micro spot KW - Synchrotron radiation PY - 2008 U6 - https://doi.org/10.1021/la800768v SN - 0743-7463 SN - 1520-5827 VL - 24 IS - 15 SP - 7970 EP - 7978 PB - American Chemical Society CY - Washington, DC AN - OPUS4-17818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichelbaum, M. A1 - Kneipp, Janina A1 - Schmidt, B.E. A1 - Panne, Ulrich A1 - Rademann, K. T1 - SERS and Multiphoton-Induced Luminescence of Gold Micro- and Nanostructures Fabricated by NIR Femtosecond-Laser Irradiation KW - Gold KW - Luminescence KW - Multiphoton fabrication KW - Sol-gel processes KW - Surface-enhanced Raman scattering PY - 2008 U6 - https://doi.org/10.1002/cphc.200800417 SN - 1439-4235 SN - 1439-7641 VL - 9 IS - 15 SP - 2163 EP - 2167 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-18233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Heyde, M. A1 - Rademann, K. T1 - The use of a fibre-based light sensor for the calibration of Scanning Probe Microscopy piezos KW - Tunneling microscopy KW - Height calibration KW - Force-microscopy PY - 1999 SN - 1862-6300 SN - 0031-8965 VL - 173 IS - 1 SP - 225 EP - 234 PB - Wiley-VCH CY - Berlin AN - OPUS4-6857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyde, M. A1 - Sturm, Heinz A1 - Rademann, K. T1 - New application for the calibration of scanning probe microscopy piezos KW - Scanning probe microscope KW - Piezoelectric translator KW - Calibration KW - Height Calibration KW - Force-Microscopy PY - 1999 SN - 0142-2421 SN - 1096-9918 VL - 27 IS - 5-6 SP - 291 EP - 295 PB - Wiley CY - Chichester AN - OPUS4-6858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Heyde, M. A1 - Rademann, K. T1 - Measuring SPM Piezo Displacement Responses PY - 1999 SN - 1551-9295 VL - 99 IS - 4 SP - 24 EP - 26 PB - Microscopy Society of America CY - Wappingers Falls, NY AN - OPUS4-6860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyde, M. A1 - Sturm, Heinz A1 - Geuss, Markus A1 - Ritter, C. A1 - Rademann, K. T1 - Rastersondenmikroskopie als Werkzeug der Lithographie für Nanostrukturen PY - 1999 SN - 0946-641X VL - 6 IS - 3 SP - 28 EP - 33 PB - Universität CY - Berlin AN - OPUS4-6861 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Erler, Robert A1 - Thünemann, Andreas A1 - Sokolov, S. A1 - Ahner, T. T. A1 - Rademann, K. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Nucleation and growth of gold nanoparticles studies via in situ small angle X-ray scattering at millisecond time resolution N2 - Gold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process (~2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small angle X-ray scattering (SAXS) setup. This online characterization technique enables the time-resolved investigation of the growth process of the nanoparticles from an average radius of ca. 0.8 nm to about 2 nm. To the best of our knowledge, this is the first demonstration of a continuous-flow SAXS setup for time-resolved studies of nanoparticle formation mechanisms that does not require the use of synchrotron facilities. In combination with X-ray absorption near edge structure microscopy, scanning electron microscopy, and UV-vis spectroscopy the obtained data allow the deduction of a two-step mechanism of gold nanoparticle formation. The first step is a rapid conversion of the ionic gold precursor into metallic gold nuclei, followed by particle growth via coalescence of smaller entities. Consequently it could be shown that the studied synthesis serves as a model system for growth driven only by coalescence processes. KW - Nanoparticle formation mechanism KW - SAXS KW - Microstructured static mixer KW - Continuous flow PY - 2010 U6 - https://doi.org/10.1021/nn901499c SN - 1936-0851 VL - 4 IS - 2 SP - 1076 EP - 1082 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-20940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fenger, A. A1 - Fertitta, E. A1 - Kirmse, H. A1 - Thünemann, Andreas A1 - Rademann, K. T1 - Size dependent catalysis with CTAB-stabilized gold nanoparticles N2 - CTAB-stabilized gold nanoparticles were synthesized by applying the seeding-growth approach in order to gain information about the size dependence of the catalytic reduction of p-nitrophenol to p-aminophenol with sodium borohydride. Five different colloidal solutions of stabilized gold nanoparticles have been characterized by TEM, AFM, UV-Vis, SAXS, and DLS for their particle size distributions. Gold nanoparticles (mean sizes: 3.5, 10, 13, 28, 56 nm diameter) were tested for their catalytic efficiency. Kinetic data were acquired by UV-Vis spectroscopy at different temperatures between 25 and 45 °C. By studying the p-nitrophenol to p-aminophenol reaction kinetics we determined the nanoparticle size which is needed to gain the fastest conversion under ambient conditions in the liquid phase. Unexpectedly, CTAB-stabilized gold nanoparticles with a diameter of 13 nm are most efficient. KW - Nanoparticle KW - Small-angle X-ray scattering KW - SAXS PY - 2012 U6 - https://doi.org/10.1039/c2cp40792b SN - 1463-9076 SN - 1463-9084 VL - 14 IS - 26 SP - 9343 EP - 9349 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-26071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Tuaev, X. A1 - Wuithschick, M. A1 - Fischer, A. A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles N2 - The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation. KW - Silver nanoparticle growth KW - Formation mechanisms KW - Nucleation KW - SAXS PY - 2012 U6 - https://doi.org/10.1021/nn301724z SN - 1936-0851 VL - 6 IS - 7 SP - 5791 EP - 5802 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-26427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wuithschick, M. A1 - Paul, B. A1 - Bienert, Ralf A1 - Sarfraz, A. A1 - Vainio, U. A1 - Sztucki, M. A1 - Kraehnert, R. A1 - Strasser, P. A1 - Rademann, K. A1 - Emmerling, Franziska A1 - Polte, J. T1 - Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding N2 - Metal nanoparticles have attracted much attention due to their unique properties. Size control provides an effective key to an accurate adjustment of colloidal properties. The common approach to size control is testing different sets of parameters via trial and error. The actual particle growth mechanisms, and in particular the influences of synthesis parameters on the growth process, remain a black box. As a result, precise size control is rarely achieved for most metal nanoparticles. This contribution presents an approach to size control that is based on mechanistic knowledge. It is exemplified for a common silver nanoparticle synthesis, namely, the reduction of AgClO4 with NaBH4. Conducting this approach allowed a well-directed modification of this synthesis that enables, for the first time, the size-controlled production of silver nanoparticles 4–8 nm in radius without addition of any stabilization agent. KW - Silver nanoparticles KW - Growth mechanism KW - SAXS KW - Size control KW - Sodium borohydride PY - 2013 U6 - https://doi.org/10.1021/cm401851g SN - 0897-4756 SN - 1520-5002 VL - 25 IS - 23 SP - 4679 EP - 4689 PB - American Chemical Society CY - Washington, DC AN - OPUS4-30194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Greiser, Sebastian A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid N2 - A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes. KW - in situ KW - cocrystal KW - mechanochemistry KW - pyrazinamide KW - hydrate PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-372357 SN - 1420-3049 VL - 21 IS - 7 SP - Article 917, 1 EP - 9 AN - OPUS4-37235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Scholz, G. A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Evaluation of the formation pathways of cocrystal polymorphs in liquid-assisted syntheses N2 - The synthesis of the polymorphic cocrystal caffeine:anthranilic acid was investigated to obtain a better understanding of the processes leading to the formation of different polymorphic forms. In the case of these cocrystal polymorphs synthesized by liquid-assisted grinding a distinct influence of the dipole moment of the solvent was found. A pre-coordination between the solvent molecules and the caffeine:anthranilic acid cocrystal could be identified in the formation of form II. In the case of form II the solvent can be regarded as a catalyst. The formation pathway of each polymorph was evaluated using synchrotron X-ray diffraction. KW - cocrystal KW - synchrotron X-ray diffraction KW - caffeine PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-313222 SN - 1466-8033 VL - 16 IS - 35 SP - 8272 EP - 8278 CY - London, UK AN - OPUS4-31322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Klobes, Peter A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal-organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas N2 - The strategy of utilizing mechanochemical synthesis to obtain metal–organic frameworks (MOFs) with high surface areas is demonstrated for two model systems. The compounds HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate) and MOF-14 (Cu3(BTB)2, BTB = 4,4',4''-benzenetribenzoate) were synthesized by ball milling and characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and thermal analysis (DTA/DTG/MS). The specific surface area (SSA) of both compounds was characterized by nitrogen adsorption. To verify these results and to understand how the synthetic conditions influence the pore structure and the surface area, additional small-angle X-ray scattering (SAXS) experiments were carried out. Our investigations confirm that this synthesis approach is a promising alternative method for distinct MOFs. This facile method leads to materials with surface areas of 1713 m²/g, which is comparable to the highest given values in the literature for the respective compounds. KW - Metal-organic frameworks KW - Mechanochemistry KW - Green-chemistry synthesis KW - Gas adsorption KW - SAXS KW - Specific surface area PY - 2010 U6 - https://doi.org/10.1021/cm1012119 SN - 0897-4756 SN - 1520-5002 VL - 22 IS - 18 SP - 5216 EP - 5221 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simo, A. A1 - Merk, Virginia A1 - Fenger, R. A1 - Kneipp, Janina A1 - Rademann, K. T1 - Long-term stable silver subsurface ion-exchanged glasses for SERS applications N2 - We report on the formation of silver subsurface ion-exchanged metal oxide (silver SIMO) glasses and their surface-enhanced Raman scattering (SERS) activity. The samples were prepared by a combined thermal and chemical three-step methodology and characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), environmental electron scanning microscopy (ESEM), and UV/Vis spectroscopy. This unique method provides SERS substrates with protection against contamination and strong, reliable and reproducible SERS enhancement. The Raman enhancement factors of the long-term stable SIMO glasses were estimated to approximately 107. KW - AFM/TEM/SEM KW - Ion-exchange KW - Nanoparticles KW - Glasses KW - Surface-enhanced Raman scattering PY - 2011 U6 - https://doi.org/10.1002/cphc.201100098 SN - 1439-4235 N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. VL - 12 IS - 9 SP - 1683 EP - 1688 PB - Wiley-VCH CY - Weinheim AN - OPUS4-23872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Leiterer, Jork A1 - Kneipp, Janina A1 - Rössler, E. A1 - Panne, Ulrich A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Combined synchrotron XRD/Raman measurements: In situ identification of polymorphic transitions during crystallization processes N2 - A combination of two analytical methods, time-resolved X-ray diffraction (XRD) and Raman spectroscopy, is presented as a novel tool for crystallization studies. An acoustic levitator was employed as sample environment. This setup enables the acquisition of XRD and Raman data in situ simultaneously within a 20 s period and hence permits investigation of polymorphic phase transitions during the crystallization process in different solvents (methanol, ethanol, acetone, dichloromethane, acetonitrile). These real time measurements allow the determination of the phase content from the onset of the first crystalline molecular assemblies to the stable system. To evaluate the capability of this approach, the setup was applied to elucidate the crystallization process of the polymorphic compound nifedipine. The results indicate the existence of solvent-dependent transient phases during the crystallization process. The quality of the data allowed the assignment of the lattice constants of the hitherto unknown crystal structure of the β-polymorph. KW - Synchrotron radiation KW - XRD KW - Raman spectroscopy KW - Polymorphism KW - Crystallization KW - Acoustic levitation KW - Nifedipine PY - 2010 U6 - https://doi.org/10.1021/la100540q SN - 0743-7463 SN - 1520-5827 VL - 26 IS - 13 SP - 11233 EP - 11237 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Towards novel pseudo-polymorphs of nifedipine: elucidation of a slow crystallization process N2 - The crystallization of nifedipine was studied by means of synchrotron-X-ray diffraction, single-crystal X-ray structural analysis, and Raman spectroscopy. The results of slow evaporation (24 h in minimum) using dimethyl sulfoxide (DMSO) are presented. Since fast crystallization processes (typically minutes) in different solvents always led to the final formation of the thermodynamically most stable α-polymorph of nifedipine, we observed a novel pseudo-polymorph due to slow crystallization from DMSO. The single-crystal X-ray structure of the solvated species nifedipine·DMSO (1:1) is reported for the first time. In addition, the crystallization process on surfaces was followed by means of light microscopy and environmental scanning electron microscopy (ESEM) coupled with energy-dispersive X-ray spectroscopy (EDS) analysis. Different diffractions pattern and Raman spectra were observed for crystals grown from stock solution and those obtained by drying the solution on soda lime silicate surfaces. KW - Synchrotron radiation KW - Polymorphism KW - Crystallization KW - Nifedipine PY - 2010 U6 - https://doi.org/10.1021/cg100186v SN - 1528-7483 VL - 10 IS - 6 SP - 2693 EP - 2698 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-21398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Wenzel, Klaus-Jürgen A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Quantitative determination of activation energies in mechanochemical reactions N2 - Mechanochemical reactions often result in 100% yields of single products, making purifying procedures obsolete. Mechanochemistry is also a sustainable and eco-friendly method. The ever increasing interest in this method is contrasted by a lack in mechanistic understanding of the mechanochemical reactivity and selectivity. Recent in situ investigations provided direct insight into formation pathways. However, the currently available theories do not predict temperature T as an influential factor. Here, we report the first determination of an apparent activation energy for a mechanochemical reaction. In a temperaturedependent in situ study the cocrystallisation of ibuprofen and nicotinamide was investigated as a model system. These experiments provide a pivotal step towards a comprehensive understanding of milling reaction mechanisms. KW - Mechanochemistry KW - Cocrystal KW - Activation energy KW - Milling PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-377444 SN - 1463-9076 SN - 1463-9084 VL - 18 IS - 33 SP - 23320 EP - 23325 AN - OPUS4-37744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Lubjuhn, Dominik A1 - Greiser, Sebastian A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Supply and demand in the ball mill: competitive cocrystal reactions N2 - The stability of different theophylline cocrystals under milling conditions was investigated by competitive cocrystal reactions. To determine the most stable cocrystal form under milling conditions, the active pharmaceutical ingredient theophylline was either ground with two similar coformers (benzoic acid, benzamide, or isonicotinamide), or the existing theophylline cocrystals were ground together with a competitive coformer. All competitive reactions were investigated by in situ powder X-ray diffraction disclosing the formation pathway of the milling processes. On the basis of these milling reactions, a stability order (least to most stable) was derived: tp/bs < tp/ba < tp/ina < bs/ina. KW - Mechanochemistry KW - Cocrystal KW - Milling PY - 2016 U6 - https://doi.org/10.1021/acs.cgd.6b00928 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 10 SP - 5843 EP - 5851 AN - OPUS4-38097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Gorelik, T. E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Kolb, U. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The crystallisation of copper(II) phenylphosphonates N2 - The crystal structures and syntheses of four different copper(II) phenylphosphonates, the monophenylphosphonates α-, β-, and γ-Cu(O3PC6H5)·H2O (α-CuPhPmH (1) β-CuPhPmH (2) and γ-CuPhPmH (3)), and the diphosphonate Cu(HO3PC6H5)2·H2O (CuPhP2mH (4)), are presented. The compounds were synthesized from solution at room temperature, at elevated temperature, under hydrothermal conditions, and mechanochemical conditions. The structures of α-CuPhPmH (1) and CuPhP2mH (4) were solved from powder X-ray diffraction data. The structure of β-CuPhPmH (2) was solved by single crystal X-ray analysis. The structures were validated by extended X-ray absorption fine structure (EXAFS) and DTA analyses. Disorder of the crystal structure was elucidated by electron diffraction. The relationship between the compounds and their reaction pathways were investigated by in situ synchrotron measurements. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-384217 SN - 1477-9226 SN - 1477-9234 VL - 45 IS - 43 SP - 17453 EP - 17463 PB - The Royal Society of Chemistry AN - OPUS4-38421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Joester, Maike A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Survival of the fittest: competitive co-crystal reactions in the ball mill N2 - The driving forces triggering the formation of co-crystals under milling conditions were investigated by using a set of multicomponent competitive milling reactions. In these reactions, different active pharmaceutical ingredients were ground together with a further compound acting as coformer. The study was based on new co-crystals including the coformer anthranilic acid. The results of the competitive milling reactions indicate that the formation of co-crystals driven by intermolecular recognition are influenced and inhibited by kinetic aspects including the formation of intermediates and the stability of the reactants. PY - 2015 U6 - https://doi.org/10.1002/chem.201500925 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 42 SP - 14969 EP - 14974 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-34861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Greiser, Sebastian A1 - Peifer, Dietmar A1 - Jäger, Christian A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemically Induced Conversion of Crystalline Benzamide Polymorphs by Seeding N2 - Benzamide has been known for its polymorphism for almost 200 years.Three polymorphic forms are described. To date,itwas only possible to crystallizeametastable form in amixture together with the thermodynamically most stable form I. Acomplete transformation of form Iinto the metastable form III by mechanochemical treatment has been achieved. Catalytic amounts of nicotinamide seeds were used to activate the conversion by mechanochemical seeding. NMR experiments indicated that the nicotinamide molecules were incorporated statistically in the crystal lattice of benzamide form III during the conversion. The transformation pathway was evaluated using in situ powder X-ray diffraction. KW - Nicotinamide KW - Benzamide KW - In situ reactions KW - Mechanochemistry KW - Polymorphs PY - 2016 U6 - https://doi.org/10.1002/anie.201607358 VL - 128 IS - 46 SP - 14493 EP - 14497 PB - WILEY-VCH CY - Weinheim AN - OPUS4-38472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Klimakow, Maria A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Fast and efficient synthesis of a host guest system: a mechanochemical approach N2 - An unusually fast and effective synthesis procedure for a host guest system consisting of a metal organic framework (MOF) and a polyoxometalate (POM) is described. The material was synthesised mechanochemically and the evolution of the structure was monitored ex and in situ using synchrotron X-ray diffraction (XRD). KW - Mechanochemistry KW - MOF KW - in situ PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-354910 UR - http://pubs.rsc.org/en/Content/ArticleLanding/2016/CE/C5CE01868D#!divAbstract VL - 18 IS - 7 SP - 1096 EP - 1100 AN - OPUS4-35491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Heidrich, Adrian A1 - Greiser, Sebastian A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Polymorphism of mechanochemically synthesized cocrystals: a case study N2 - The liquid-assisted grinding cocrystallisation of theophylline with benzamide leading to polymorphic compounds was investigated. A solvent screening with seventeen different solvents was performed. The dipole moment of the solvent used in the synthesis determines the structure of the polymorphic product. A detailed investigation leads to the determination of the kinetically and thermodynamically favored product. In situ observations of the formation pathway during the grinding process of both polymorphs show that the thermodynamically favored cocrystal is formed in a two-step mechanism with the kinetic cocrystal as intermediate. KW - cocrystal KW - mechanochemistry KW - theophylline KW - benzamide KW - milling KW - polymorphism PY - 2016 U6 - https://doi.org/10.1021/acs.cgd.5b01776 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 3 SP - 1701 EP - 1707 AN - OPUS4-35618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gnutzmann, Tanja A1 - Nguyen, Thi Yen A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Solvent-triggered crystallization of polymorphs studied in situ N2 - The crystallization of a highly polymorphic compound was studied in situ by combined time-resolved X-ray diffraction and Raman spectroscopy. Any influences of solid surfaces, temperature, and humidity on the crystallization were omitted by the use of a specially designed acoustic levitator. Investigations of polymorphic phase transitions during the crystallization process in different solvents allowed a structure assignment from first crystalline assemblies to final crystalline form. For the first time, it was possible to yield pure phases of selected polymorphs of the model compound ROY (5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile) directly from solution. The influence of the solvent on the final products and transient phases during the crystallization process was elucidated. KW - Polymorphism KW - Crystallization KW - In situ WAXS KW - In situ Raman spectroscopy KW - ROY PY - 2014 U6 - https://doi.org/10.1021/cg501287v SN - 1528-7483 VL - 14 IS - 12 SP - 6445 EP - 6450 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-32583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, Thi Yen A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Direct evidence of polyamorphism in paracetamol N2 - While polymorphism is a common phenomenon in the crystallization processes of organic compounds, polyamorphism has gained importance only recently. Using sophisticated sample environments and applying in situ scattering methods and vibrational spectroscopy, the complete crystallization process of organic compounds from solution can be traced and characterized. Diffuse scattering from amorphous intermediates can be investigated by analyzing the atomic pair distribution function (PDF) to gain further insights into molecular pre-orientation. The crystallization behavior of paracetamol was studied exemplarily under defined, surface-free conditions. Based on the choice of the solvent, the formation of different polymorphs is promoted. The thermodynamically stable form I and the metastable orthorhombic form II could be isolated in pure form directly from solution. For both polymorphs, the crystallization from solution proceeds via a distinct amorphous precursor phase. PDF analyses of these different amorphous states indicate a specific pre-orientation of the analyte molecules introduced by the solvent. The resulting crystalline polymorph is already imprinted in these proto-crystalline precursors. Direct experimental evidence for the polyamorphism of paracetamol is provided. PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351366 SN - 1466-8033 VL - 17 IS - 47 SP - 9029 EP - 9036 PB - Royal Society of Chemistry CY - London, UK AN - OPUS4-35136 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Greiser, Sebastian A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Knowing When To Stop-Trapping Metastable Polymorphs in Mechanochemical Reactions N2 - The cocrystal formation of pyrazinamide (PZA) with malonic acid (MA) was studied in situ. The mechanochemical reaction proceeds via conversion of a crystalline intermediate (PZA:MA II) into the thermodynamically more stable form (PZA:MA I) upon further grinding. The information derived from in situ powder X-ray diffraction (PXRD) enabled the isolation of this new metastable polymorph. On the basis of the PXRD data, the crystal structure of the 1:1 cocrystal PZA:MA II was solved. The polymorphs were further characterized and compared by Raman spectroscopy, solid-state NMR spectroscopy, differential thermal analysis/thermogravimetric analysis, and scanning electron microscopy. Our study demonstrates how monitoring mechanochemical reactions by in situ PXRD can direct the discovery and isolation of even short-lived intermediates not yet accessed by conventional methods. KW - Mechanochemistry KW - Polymorphs KW - Metastable KW - In situ PXRD KW - Cocrystal KW - Pyrazinamide PY - 2017 U6 - https://doi.org/10.1021/acs.cgd.6b01572 SN - 1528-7483 SN - 1528-7505 VL - 17 IS - 3 SP - 1190 EP - 1196 AN - OPUS4-39420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Akhemtova, Irina A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of cerium(IV)-phosphonates N2 - The syntheses and crystal structures of two cerium(IV) phosphonates are presented. Cerium(IV) bis(phenylphosphonate) Ce(O3PC6H5)2 1 can be formed from precipitation and mechanochemical reaction, whereas cerium(IV) bis(carboxymethylphosphonate) monohydrate Ce(O3PCH2COOH)2 H2O 2 is only accessible via ball milling. All reactions proceed very fast and are completed within a short time span. In situ measurements for the syntheses of 1 show that the product occurs within seconds or a few minutes, respectively. The structures were solved from powder X-ray diffraction data. KW - In situ studies KW - Mechanochemistry KW - XRD PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2507-x SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13733 EP - 13741 PB - Springer Science + Business Media B.V. AN - OPUS4-45672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Schuzjajew, K. A1 - Wilke, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Rademann, K. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Synthesis, characterization and in situ monitoring of the mechanochemical reaction process of two manganese(II)-phosphonates with N-containing ligands N2 - Two divalent manganese aminophosphonates, manganese mono (nitrilotrimethylphosphonate) (MnNP3) and manganese bis N-(carboxymethyl)iminodi(methylphosphonate)) (Mn(NP2AH)2), have been prepared by mechanochemical synthesis and characterized by powder X-ray diffraction (PXRD). The structure of the novel compound Mn(NP2AH)2 was determined from PXRD data. MnNP3 as well as Mn(NP2AH)2 exhibits a chain-like structure. In both cases, the manganese atom is coordinated by six oxygen atoms in a distorted octahedron. The local coordination around Mn was further characterized by extended X-ray absorption fine structure. The synthesis process was followed in situ by synchrotron X-ray diffraction revealing a three-step reaction mechanism. The asprepared manganese(II) phosphonates were calcined on air. All samples were successfully tested for their suitability as catalyst material in the oxygen evolution reaction. KW - Mechanochemistry KW - In situ KW - XRD PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2608-6 SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13390 EP - 13399 PB - Springer Science + Business Media B.V. AN - OPUS4-45673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Zimathies, Annett A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Crystal structure and in situ investigation of a mechanochemical synthesized 3D zinc N-(phosphonomethyl)glycinate N2 - The mechanochemical synthesis of the zinc N-(phosphonomethyl)glycinate Zn(O₃PCH₂NH₂CH₂CO₂) H₂O is presented. The structure was solved from powder X-ray diffraction (PXRD) data. In the three-dimensional pillared structure, the Zn atoms are coordinated tetrahedrally. In situ investigations of the reaction process with synchrotron PXRD and Raman spectroscopy reveal a two-step process including the formation of an intermediate. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2017 U6 - https://doi.org/10.1007/s10853-017-1121-7 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 20 SP - 12013 EP - 12020 PB - Springer CY - New York AN - OPUS4-41490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Fischer, Franziska A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD N2 - The effect of the reactant powder mass on reaction times for the mechanochemical formation of a soft matter model system was studied by in situ PXRD. The syntheses were performed at a constant ball mass in a shaker mill with and without glassy SiO2 as an inert additive. Reaction times decreased with the increase of the ball to reactant ratio (BRR). The kinetic influence of the SiO2 powder was excluded. The decrease in the reaction time with decreasing mass of reactants was related to the rise in the stress energy transferred to the powder by a higher ball impact. The BRR had no effect on the induction time. But the product conversion was accelerated by raising the BRR. While a certain temperature is needed for the activation of reactants in the induction phase, the conversion of soft matter reactants is rather controlled by impact than temperature. KW - XRD KW - Mechanochemistry PY - 2017 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce00502d U6 - https://doi.org/10.1039/c7ce00502d VL - 19 IS - 28 SP - 3902 EP - 3907 AN - OPUS4-41197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Panne, Ulrich A1 - Rademann, K. A1 - Maiwald, Michael T1 - Quantitative NMR Spektroskopie unter Druck - Anwendungen an fluiden und gasförmigen technischen Mischungen N2 - Die quantitative NMR-Spektroskopie (qNMR) gewinnt in den letzten Jahren immer mehr an Bedeutung, speziell hinsichtlich der Anwendung auf komplexe Fragestellungen der analytischen Chemie. Ein großer Vorteil dieser Methode ist die Möglichkeit der Relativquantifizierung durch das „Zählen von Kernspins" in der Probe. Unter der Voraussetzung eines korrekt ausgeführten NMR-Experiments ist so der direkte Vergleich von Signalflächen im Spektrum möglich, ohne dass zuvor zwingend eine Kalibrierung notwendig ist. T2 - 8. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 23.02.2014 PY - 2014 SN - 978-3-9816380-1-1 SP - 20 AN - OPUS4-32090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas A1 - Rademann, K. A1 - Panne, Ulrich A1 - Maiwald, Michael T1 - Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures N2 - Due to its direct correlation to the number of spins within a sample quantitative NMR spectroscopy (qNMR) is a promising method with absolute comparison abilities in complex systems in technical, as well as metrological applications. Most of the samples studied with qNMR are in liquid state in diluted solutions, while gas-phase applications represent a rarely applied case. Commercially available NMR equipment was used for purity assessment of liquid and liquefied hydrocarbons serving as raw materials for production of primary reference gas standards. Additionally, gas-phase studies were performed within an online NMR flow probe, as well as in a high-pressure NMR setup to check feasibility as verification method for the composition of gas mixtures. KW - Quantitative NMR spectroscopy KW - Gas-phase NMR spectroscopy KW - Primary reference gas mixtures PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S1090780716302518 U6 - https://doi.org/10.1016/j.jmr.2016.11.016 SN - 1090-7807 SN - 1096-0856 VL - 275 SP - 1 EP - 10 AN - OPUS4-38803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -