TY - JOUR A1 - Rackwitz, Vanessa A1 - Panne, Ulrich A1 - Hodoroaba, Vasile-Dan T1 - Calculation of X-ray tube spectra by means of photon generation yields and a modified Kramers background for side-window X-ray tubes N2 - Popular X-ray tube models available in the literature, i.e. 'Pella', 'Ebel', and 'Finkelshtein and Pavlova', are systematically evaluated with the focus on the estimation of the associated uncertainties. Also taken in consideration and compared is our recent semi-empirical own approach already employed in our lab. This has been working for the common target elements rhodium, molybdenum and tungsten and was further extended in the present work for the target elements copper, chromium and vanadium. By using a modern scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) system this time, higher performances such as stability of the beam current and especially the better energy resolution of the EDS have enabled the reliable extension of our own X-ray tube spectrum approach into the low-energy range, due to increasing interest. Hence, also the more challenging X-ray lines of copper, chromium and vanadium L-series lying in the energy range below 1–2?keV are included into the model. Such low-energy L-lines or, e.g. M-lines of tungsten, are not treated explicitly by the other existing popular algorithms for the nowadays widely used geometries of side-window tubes, offering a unique virtue to our present, modern approach. With our own model, a measurement uncertainty of the X-ray tube spectra (considering the uncertainties associated with the SEM beam current, the detector acceptance solid angle and efficiency of the spectrometer) within 15% has been estimated. The validation of the approach is demonstrated with metrological measurements with a calibrated SEM/EDS system geometrically configured as a side-window X-ray tube. KW - X-ray tube spectra KW - Side-window X-ray tube KW - Reference-free XRF KW - Photon generation yield KW - Kramers background KW - Calibrated SEM/EDS PY - 2012 U6 - https://doi.org/10.1002/xrs.2391 SN - 0049-8246 VL - 41 IS - 4 SP - 264 EP - 272 PB - Wiley CY - Chichester AN - OPUS4-26239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rackwitz, Vanessa A1 - Ostermann, Markus A1 - Panne, Ulrich A1 - Hodoroaba, Vasile-Dan T1 - Performance of mu-XRF with SEM/EDS for trace analysis on the example of RoHS relevant elements - measurement, optimisation and predivtion of the detection limits N2 - For ten years µ-XRF (micro-focus X-ray fluorescence) analysis has been performed with SEM/EDS (scanning electron microscope with an energy dispersive X-ray detector) so that non-destructive analysis of elements at trace level concentrations below 100 µg g-1 becomes possible. This can be considered as a valuable completion of the classical electron probe microanalysis by EDS, an analytical method 'suffering' from rather poor limits of detection in the range of one to two orders of magnitude higher than those of µ-XRF. Based on a representative actual application, namely analysis of RoHS relevant elements at trace concentration levels, the performance of the rather new analytical method with respect to its limits of detection is systematically evaluated. CRMs (certified reference materials) specially prepared to support the quantitative XRF analysis of RoHS relevant elements were employed. On the other side, based on calculations of µ-XRF spectra according to a recently developed physical model the optimization of the analytical performance is also successfully undertaken. KW - RoHS KW - XRF KW - muXRF KW - SEM/EDS KW - Detection limits KW - Trace elements KW - Modelling PY - 2013 U6 - https://doi.org/10.1039/c3ja50064k SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 9 SP - 1466 EP - 1474 PB - Royal Society of Chemistry CY - London AN - OPUS4-29045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rackwitz, Vanessa A1 - Warrikhoff, A. A1 - Panne, Ulrich A1 - Hodoroaba, Vasile-Dan T1 - Determination of the efficiency of an energy dispersive X-ray spectrometer up to 50 keV with a SEM N2 - Both electron and polychromatic photon excitations (micro-focus X-ray source) at a scanning electron microscope (SEM) are used to determine the efficiency of an energy dispersive X-ray spectrometer up to 50 keV by means of a calibrated X-ray spectrometer and reference materials (RM) specially selected for this purpose. KW - Detector efficiency KW - Calibration KW - XRF KW - EDS KW - SEM KW - EDS-TM001 KW - Scattering PY - 2009 U6 - https://doi.org/10.1039/b907815k SN - 0267-9477 SN - 1364-5544 VL - 24 SP - 1034 EP - 1036 PB - Royal Society of Chemistry CY - London AN - OPUS4-19714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rackwitz, Vanessa A1 - Reuter, Dirk T1 - X-ray scattering and its benefits for X-ray spectrometry at the SEM PY - 2009 U6 - https://doi.org/10.1017/S1431927609094392 SN - 1431-9276 SN - 1435-8115 VL - 15 IS - Suppl. 2 SP - 1122 EP - 1123 PB - Cambridge University Press CY - New York, NY AN - OPUS4-19792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Radtke, Martin A1 - Vincze, L. A1 - Rackwitz, Vanessa A1 - Reuter, Dirk T1 - X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation N2 - X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses. KW - X-ray scattering KW - X-ray fluorescence KW - Spectral background KW - Modelling KW - Monte-Carlo simulation PY - 2010 U6 - https://doi.org/10.1016/j.nimb.2010.09.017 SN - 0168-583X SN - 1872-9584 VL - 268 IS - 24 SP - 3568 EP - 3575 PB - Elsevier CY - Amsterdam AN - OPUS4-22357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rackwitz, Vanessa A1 - Procop, M. A1 - Bjeoumikhova, S. A1 - Panne, Ulrich A1 - Hodoroaba, Vasile-Dan T1 - A routine procedure for the characterisation of polycapillary X-ray semi-lenses in prallelising mode with SEM/EDS N2 - The accurate knowledge of the properties of polycapillary X-ray semi-lenses has a significant influence on the quantitative results in a widespread field of applications involving microfocus X-ray beams. A routine procedure for the characterisation of a polycapillary X-ray semi-lens with a scanning electron microscope (SEM) having attached an energy dispersive spectrometer (EDS) is presented in this paper. A key issue of the procedure consists of fitting the semi-lens in front of the EDS for spectra acquisition. Relevant semi-lens parameters such as focal distance, full width at half maximum (FWHM) of the acceptance area, and transmission are determined in parallelising mode of the semi-lens. Special attention has been paid to the calculation of the transmission. KW - Polycapillary X-ray optics KW - Semi-lens KW - Parallelising mode KW - SEM KW - EDS KW - Acceptance area KW - FWHM KW - Transmission KW - Focal distance KW - XRF PY - 2011 U6 - https://doi.org/10.1039/c0ja00135j SN - 0267-9477 SN - 1364-5544 VL - 26 IS - 3 SP - 499 EP - 504 PB - Royal Society of Chemistry CY - London AN - OPUS4-23555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Salge, T. A1 - Terborg, R. A1 - Rackwitz, Vanessa T1 - Advanced elemental analysis with ED-EPMA, WD-EPMA and mu-XRF at a SEM N2 - It is a latent wish of any SEM/EDS (scanning electron microscope with an energy dispersive spectrometer) analyst to “see more” of the analyzed specimen, i.e. to improve the existing analytical figures of merit. One key issue are the relatively poor limits of detection (not below 0.1 mass-%) provided by energy dispersive X-ray spectrometry (EDX) with the conventional electron excitation (ED-EPMA). This is a consequence of relatively low peak-to-background ratios and reduced energy resolution when compared to wavelength dispersive spectrometry (WD-EPMA). Recent technological developments make possible to equip the SEM with a wavelength dispersive spectrometer (WDS), so that significantly better energy resolution can be attained. Also a relative new product that can be easily attached to a SEM/EDS system is a micro-focus X-ray source. Hence, it is possible to perform (micro-focus) X-ray fluorescence spectrometry (μ-XRF) and take advantage of the enhanced peak-to-background ratios (well suited for trace analysis). However, there are also some disadvantages: an increased measurement time and excitation with a high current in the 10s of nA range are usually required for WDS. μ-XRF provides more bulk information and poor limits of detection for light elements. By combining the advantages of these analytical techniques “seeing more” becomes possible. KW - ED-EPMA KW - WD-EPMA KW - (mu-)XRF KW - EDX PY - 2011 U6 - https://doi.org/10.1017/S1431927611003874 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - Suppl. 2 SP - 600 EP - 601 PB - Cambridge University Press CY - New York, NY AN - OPUS4-26751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rackwitz, Vanessa A1 - Hodoroaba, Vasile-Dan T1 - An attempt of exploiting the compton-to-rayleigh intensity ratio for improved analysis with muXRF at a SEM KW - X-ray scattering KW - Compton scattering KW - Rayleigh scattering KW - XRF PY - 2012 U6 - https://doi.org/10.1017/S1431927612006678 SN - 1431-9276 SN - 1435-8115 VL - 18 IS - Suppl. 2 SP - 964 EP - 965 PB - Cambridge University Press CY - New York, NY AN - OPUS4-26753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rackwitz, Vanessa T1 - Prediction of detection limits of micro X-ray fluorescence (muXRF) KW - X-ray scattering KW - Limits of detection KW - Peak-to-background KW - Peak-to-noise KW - XRF KW - Modelling PY - 2012 U6 - https://doi.org/10.1017/S1431927612006563 SN - 1431-9276 SN - 1435-8115 VL - 18 IS - Suppl. 2 SP - 942 EP - 943 PB - Cambridge University Press CY - New York, NY AN - OPUS4-26754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rackwitz, Vanessa A1 - Procop, M. A1 - Hodoroaba, Vasile-Dan T1 - Characterization of polycapillary X-ray semilenses with SEM/EDX KW - Polycapillary X-ray optics KW - Semi-lens KW - Parallelising mode KW - SEM KW - EDS KW - Acceptance area KW - FWHM KW - Transmission KW - Focal distance KW - XRF PY - 2010 U6 - https://doi.org/10.1017/S1431927610054280 SN - 1431-9276 SN - 1435-8115 VL - 16 IS - Suppl 2 SP - 932 EP - 933 PB - Cambridge University Press CY - New York, NY AN - OPUS4-27219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -