TY - JOUR A1 - Rack, A. A1 - Zabler, S. A1 - Müller, Bernd R. A1 - Riesemeier, Heinrich A1 - Weidemann, Gerd A1 - Lange, Axel A1 - Goebbels, Jürgen A1 - Hentschel, Manfred P. A1 - Görner, Wolf T1 - High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II) N2 - The use of high brilliance and partial coherent synchrotron light for radiography and computed tomography (CT) allows to image micro-structured, multi-component specimens with different contrast modes and resolutions up to submicrometer range. This is of high interest for materials research, life science and non-destructive evaluation applications. An imaging setup for microtomography and radiography installed at BESSY II (a third generation synchrotron light source located in Berlin, Germany) as part of its first hard X-ray beamline (BAMline) can now be used for absorption, refraction as well as phase contrast — dedicated to inhouse research and applications by external users. Monochromatic synchrotron light between 6 keV and 80 keV is attained via a fully automated double multilayer monochromator. For imaging applications the synchrotron beam transmitted by the sample is converted with a scintillator into visible light. By use of microscope optics this luminescence image is then projected onto, e.g., a CCD chip. Several scintillating materials are used in order to optimise the performance of the detector system. Different optical systems are available for imaging ranging from a larger field of view and moderate resolutions (macroscope — up to 14 mm x 14 mm field of view) to high resolution (microscope — down to 0.35 μm pixel size), offering magnifications from 1.8× to 40×. Additionally asymmetric cut Bragg crystals in front of the scintillator can be used for a further magnification in one dimension by a factor of about 20. Slow and fast cameras are available, with up to 16 bit dynamic range. We show the suitability of the setup for numerous applications from materials research and life science. KW - Microtomography KW - Non-destructive evaluation KW - Synchrotron instrumentation KW - Coherent imaging KW - X-ray refraction KW - Phase contrast KW - Holotomography KW - Synchrotron-CT KW - Scintillator KW - Bragg magnification PY - 2008 U6 - https://doi.org/10.1016/j.nima.2007.11.020 SN - 0168-9002 SN - 0167-5087 VL - 586 IS - 2 SP - 327 EP - 344 PB - North-Holland CY - Amsterdam AN - OPUS4-17738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rack, A. A1 - Riesemeier, Heinrich A1 - Zabler, S. A1 - Weitkamp, T. A1 - Müller, Bernd R. A1 - Weidemann, Gerd A1 - Modregger, P. A1 - Banhart, J. A1 - Helfen, L. A1 - Danilewsky, A.N. A1 - Gräber, H.G. A1 - Heldele, R. A1 - Mayzel, B. A1 - Goebbels, Jürgen A1 - Baumbach, T. ED - Stuart R. Stock, T1 - The high-resolution synchrotron-based imaging stations at the BAMline (BESSY) and TopoTomo (ANKA) N2 - The BAMline at the BESSY light source in Berlin and the TopoTomo beamline at the ANKA synchrotron facility in Karlsruhe (both Germany) operate in the hard X-ray regime (above 6 keV) with similiar photon flux density. For typical imaging applications, a double multilayer monochromator or a filtered white beam is used. In order to optimise the field of view and the resolution of the available indirect pixel detectors, different optical systems have been installed, adapted, respectively, to a large field of view (macroscope) and to high spatial resolution (microscope). They can be combined with different camera systems, ranging from 16-bit dynamic range slow-scan CCDs to fast CMOS cameras. The spatial resolution can be brought substantially beyond the micrometer limit by using a Bragg magnifier. The moderate flux of both beamlines compared to other 3rd generation light sources is compensated by a dedicated scintillator concept. For selected applications, X-ray beam collimation has proven to be a reliable approach to increase the available photon flux density. Absorption contrast, phase contrast, holotomography and refraction-enhanced imaging are used depending on the application. Additionally, at the TopoTomo beamline digital white beam synchrotron topography is performed, using the digital X-ray pixel detectors installed. KW - Microtomography KW - Non-destructive evaluation KW - Coherent imaging KW - X-ray refraction KW - X-ray phase contrast KW - Synchrotron-CT KW - Synchrotron instrumentation KW - Scintillator KW - Bragg magnification KW - Holotomography KW - X-ray topography PY - 2008 U6 - https://doi.org/10.1117/12.793721 SN - 0277-786X VL - 7078 SP - 70780X-1 - 70780X-9 AN - OPUS4-18296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Danilewsky, A.N. A1 - Rack, A. A1 - Wittge, J. A1 - Weitkamp, T. A1 - Simon, R. A1 - Riesemeier, Heinrich A1 - Baumbach, T. T1 - White beam synchrotron topography using a high resolution digital X-ray imaging detector N2 - X-ray topography is a well known imaging technique to characterise strain and extended defects in single crystals. Topographs are typically collected on X-ray films. On the one hand such photographic films show a limited dynamic range and the production of films will be discontinued step by step in the near future. On the other hand new imaging detectors improved for X-ray tomography become more and more attractive even for topography because of increasing resolution, dynamic range, speed and active area. In this paper we report about the upgrade of the TOPO–TOMO beamline at the synchrotron light source ANKA, Research Centre Karlsruhe, with a high resolution digital camera for the topography use. KW - White beam topography KW - Synchrotron radiation KW - Digital X-ray detector KW - Scintillator KW - Synchrotron instrumentation KW - Digital radiography PY - 2008 U6 - https://doi.org/10.1016/j.nimb.2008.02.065 SN - 0168-583X SN - 1872-9584 VL - 266 IS - 9 SP - 2035 EP - 2040 PB - Elsevier CY - Amsterdam AN - OPUS4-18567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -