TY - JOUR A1 - Glitzky, Carsten A1 - Rabe, Torsten A1 - Eberstein, Markus A1 - Schiller, Wolfgang Arno A1 - Töpfer, J. A1 - Barth, S. A1 - Kipka, A. T1 - LTCC-Modules with integrated ferrite layers - Strategies for material development and co-sintering JF - Journal of microelectronics and electronic packaging N2 - The integration of passive components (resistors, capacitors, inductors) into LTCC modules is a challenging task in multilayer ceramics technology. We report on multilayer assemblies consisting of combined layers of ferrite and dielectric LTCC tapes. Ni-Cu-Zn ferrites with maximum shrinkage at 900°C were processed to green tapes and laminated with dielectric LTCC tapes. Cosintering at 900°C led to multilayers with different defects such as incomplete densification of the ferrite layers, cracks, and warpage. Since ferrite tapes do not really allow compositional changes without deterioration of magnetic properties, the dielectric tape was modified with the following objectives: (i) matching of the shrinkage curves of dielectric and ferrite materials, (ii) adjusting the coefficients of thermal expansion to avoid cracking during cooling, and (iii) controlling of interface reactions. Using this concept we fabricated dense and defect-free multilayers consisting of dielectric and ferrite layers. However, compositional changes of the individual ferrite tapes require the development of a specific dielectric tape material with tailored properties. KW - Coefficient of thermal expansion (CTE) KW - Cofiring KW - Ferrite KW - LTCC KW - Shrinkage PY - 2009 SN - 1551-4897 VL - 6 IS - 1 SP - 49 EP - 53 CY - Washington, DC AN - OPUS4-19708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -