TY - JOUR A1 - Mohammadifar, E. A1 - Ahmadi, V. A1 - Gholami, M.F. A1 - Oehrl, A. A1 - Kolyvushko, O. A1 - Nie, C. A1 - Donskyi, Ievgen A1 - Herziger, S. A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Böttcher, C. A1 - Rabe, J.P. A1 - Osterrieder, K. A1 - Azab, W. A1 - Haag, R. A1 - Adeli, M. T1 - Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions JF - Advanced Functional Materials N2 - 2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts. KW - 2D Materials KW - Graphene template KW - Multivalency KW - Polyglycerol KW - Virus inhibition PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527726 DO - https://doi.org/10.1002/adfm.202009003 VL - 31 IS - 32 SP - 2009003 PB - Wiley VCH AN - OPUS4-52772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bléger, D. A1 - Liebig, T. A1 - Thiermann, Raphael A1 - Maskos, Michael A1 - Rabe, J.P. A1 - Hecht, S. T1 - Light-orchestrated macromolecular 'accordions': reversible photoinduced shrinking of rigid-rod polymers JF - Angewandte Chemie N2 - Lichtspiele: Lichteinstrahlung verursacht drastische Änderungen der Form stabförmiger Polymere mit Azobenzol‐Photochromen in der Hauptkette. Die eingebetteten Photoschalter wirken als molekulare Scharniere, die bei lichtinduzierter Isomerisierung zur reversiblen Schrumpfung und Streckung des Polymerrückgrats führen (siehe Schema); das System erinnert an ein lichtorchestriertes makromolekulares Akkordeon. N2 - Synthetic molecular systems undergoing structure and property changes as a response to external stimuli offer a series of relevant functions. Their direct use in solution, immobilized at surfaces, or integrated into adequate matrices, allow for the elaboration of nano-carriers, molecular electronic memory circuits, adaptive systems, artificial muscles, or healable materials, among others. Reversible systems are commonly generated by utilizing molecular switches as responsive bi-stable molecules. Of particular interest are switches controlled by non-invasive triggers, especially light, which can display high spatial and temporal resolution. Photoswitches were used to change properties, such as conductance and basicity, based on light-induced alteration of the molecular geometry, that is, their dimensions and shape. In nature, light-induced geometrical modifications of molecular systems lead to primary biological functions, such as the visual perception in vertebrates, or proton pumping in some bacteria, two examples that nicely illustrate the potential of photo-inducing structural modifications in organic systems. KW - Aggregation KW - Azoverbindungen KW - Nanostrukturen KW - Photochromie KW - Polymere PY - 2011 DO - https://doi.org/10.1002/ange.201106879 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 123 IS - 52 SP - 12767 EP - 12771 PB - Wiley-VCH CY - Weinheim AN - OPUS4-25394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -