TY - CONF A1 - Vahlsing, Thorsten A1 - Raum, Hanne A1 - Casperson, Ralf A1 - Pohl, Rainer A1 - Heckel, Thomas A1 - Beilken, D. A1 - Dilz, K. A1 - Rühe, S. T1 - FE-simulation of eddy current signals produced from basic model cracks for running surface rail defects T2 - Proceedings of Railway Engineering 2019 N2 - Non-destructive testing for surface crack detection and head check depth quantification at the gauge corner of railway tracks can be achieved using eddy current methods. With the extension of the tested zone to the running surface, rail defect signal types other than head checks can be measured. Due to their mostly irregular shape, a quantitation based on a calibration against regular test cracks of varying depth may not be linear. Estimates of the expected influence of more complex crack patterns may be obtained by a finite element simulation of sufficiently simple limiting cases, like two displaced or intersecting cracks or a simply branched or flexed crack. As a first step, a 3D finite element model of the HC10 eddy current probe distributed by Prüftechnik Linke und Rühe (PLR), Germany was built and verified against measured results from an (easily fabricated) reference block with isolated long cracks. T2 - 15th Railway Engineering Conference CY - Edinburgh, UK DA - 03.07.2019 KW - Finite element analysis KW - Eddy current testing KW - Rail inspection PY - 2019 SP - 1 EP - 11 AN - OPUS4-48529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Thomas, Hans-Martin A1 - Kreutzbruck, Marc A1 - Rühe, S. T1 - High speed non-destructive rail testing with advanced ultrasound and eddy-current testing techniques T2 - NDE 2009 (Proceedings) N2 - Today the rails face increased exposure to heavy loads, higher speeds and a very dense overall traffic. A continued development of testing methods for the rail inspection trains became necessary to match the modern needs for a fast detection and detailed classification of defects. To guarantee the safe operation of rail traffic non-destructive inspection techniques with combined ultrasound and eddy current testing methods are used to detect damages on rails. One of the main actual challenges of automated rail testing is the high inspection speed which is very close to the physical limits. To overcome these limits digital signal processing algorithms have to be used which maintain resolution and detection quality independent of operation speed. This paper presents a recently developed state of the art rail inspection system which uses advanced ultrasonic and eddy current testing techniques. Testing results are shown in a newly developed so called Glassy-Rail-Diagram which is capable to present data with a fixed resolution independent of inspection speed. T2 - NDE 2009 CY - Tiruchirappalli, India DA - 2009-12-10 KW - Non-destructive testing (NDT) KW - Rail inspection KW - Ultrasound KW - Eddy current KW - Signal processing PY - 2009 SP - 261 EP - 265 AN - OPUS4-20883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -