TY - CONF A1 - Hille, Falk A1 - Petryna, Y. A1 - Rücker, Werner T1 - Subspace-based detection of fatigue damage on jacket support structures of offshore wind turbines N2 - The paper describes the application of the Stochastic Subspace-based Damage Detection (SSDD) method on model structures for an utilization of this approach on offshore wind turbine structures. Aim of the study was therefore to analyze the usability and efficiency of the detection method as well as to determine an optimized set of parameter for realistic damage on support structures of wind energy turbines. Based on results of an experimental fatigue test on a Steel frame laboratory structure a strategy for a numerical verification of the experimentally evolved damage detection was developed, utilizing a time integration approach to simulate the dynamic response. In a second Step the identified modeling and computing methodology is used to numerically investigate the ability to detect damage in real size structural components of offshore wind turbines. T2 - EWSHM 2014 - 7th European workshop on structural health monitoring CY - Nantes, France DA - 08.07.2014 KW - Damage detection KW - Offshore wind turbines KW - Numerical response PY - 2014 SP - 229 EP - 236 AN - OPUS4-31218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rohrmann, Rolf A1 - Thöns, Sebastian A1 - Rücker, Werner T1 - Integrated monitoring of offshore wind turbines - requirements, concepts and experiences N2 - Wind turbines on offshore sites (OWECs) are subjected to combined loads from wind and waves. These dynamic loads, with a frequency content within the range of the natural frequencies of the structures, cause fatigue-effective stresses in the substructures of wind turbines. Therefore, the examination of natural frequencies is an important part within the design process of wind turbines. The quality of the numerical models for such calculations is of great importance, since the certification guidelines permit only small uncertainties in modal analysis results. The accuracy of the parameters of the numerical model can only be achieved through a comparison of simulation results with corresponding test results. Therefore, it is necessary to measure the dynamic behaviour of all components of the wind turbines simultaneously. This is true not only for the design verification, but also for monitoring the OWECs in operation. The potential of integrated systems for monitoring-based maintenance optimisation should thus be used. KW - Offshore wind turbines KW - Integrated monitoring system KW - Structural assessment KW - Damage indicators KW - Dynamic loads KW - Data management PY - 2010 U6 - https://doi.org/10.1080/15732470903068706 SN - 1573-2479 SN - 1744-8980 VL - 6 IS - 5 SP - 575 EP - 591 PB - Taylor & Francis CY - London AN - OPUS4-21452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -