TY - CONF A1 - Qiao, Linan A1 - Kasparek, Eva Maria A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Scheidemann, Robert T1 - Development of a finite element model for damping concrete under severe impact loads N2 - Finite element analysis (FEA) has been carried out for investigation of damping concrete under different impact loading conditions with a built-in material model and damage criteria available in FEA code ABAQUS. At first, all parameters for the selected material model had been derived from compression Tests of cubic specimens. After that, a validation was carried out with different static and dynamic penetration tests. Finally, a 5 meter real drop test with a 23 Mg cylindrical cask could successfully be simulated. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - Session D, Paper 127, 1 EP - 10 PB - Omnipress AN - OPUS4-29110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Kasparek, Eva Maria A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Dynamic penetration tests on shock absorbing damping concrete T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 2014-03-02 KW - Drop test KW - Dynamic KW - Penetration KW - Damping concrete PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14166, 1 EP - 9 AN - OPUS4-31948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Ermittlung dynamischer Kennwerte von Dämpferbeton für die Simulation des Beanspruchungsverhaltens N2 - Die Sicherheit und Integrität von Verpackungen radioaktiver Stoffe wird anhand von numerischen Berechnungen bewertet. Bei einem Anprall oder Absturz sind die mechanischen Beanspruchungen auf die Behälter auch von den Eigenschaften des Untergrunds abhängig. Um potentielle Gefahren während der Verladung zu minimieren, wird energieabsorbierender Dämpferbeton in den Handhabungsbereichen nuklearer Lager eingesetzt. Zu einer umfassenden sicherheitstechnischen Analyse und Bewertung gehört die Berücksichtigung des Beanspruchungsverhaltens von Dämpferbeton. Hierfür ist ein numerisches Materialmodell notwendig, das in der Literatur bisher nicht vorlag. Die dafür notwendigen dynamischen Kennwerte sind in verschiedenen Druck- und Eindringversuchen ermittelt worden. Dazu wurden dynamische Druckversuche an würfelförmigen Prüfkörpern durchgeführt, sowie Eindringversuche mit unterschiedlichen Eindringkörpern und Dämpferbetonproben. Die experimentell ermittelten Kennwerte wurden verwendet, um ein Materialmodell für Dämpferbeton zu entwickeln und kritische Beanspruchungsszenarien numerisch zu berechnen. Um die Qualität des Materialmodells zu überprüfen, wurde ein realitätsnaher Fallversuch eines Behälters in Originalgröße auf ein lagertypisches Dämpferbetonfundament durchgeführt. In dem Beitrag sollen die unterschiedlichen Untersuchungen zur Ermittlung dynamischer Kennwerte sowie deren Ergebnisse dargestellt werden. Gezeigt werden ebenso numerische Nachberechnungen einzelner Versuche sowie die ausführliche Berechnung des Fallversuchs im Originalmaßstab. Experimentelle und numerische Ergebnisse aus der Simulation werden hier gegenübergestellt. T2 - Tagung Werkstoffprüfung 2016 CY - Neu-Ulm, Germany DA - 01.12.2016 KW - Druckversuche KW - Eindringversuche KW - Dynamisch KW - Simulation KW - Materialmodell KW - Dämpferbeton PY - 2016 SN - 978-3-514-00830-4 VL - 2016 SP - 149 EP - 154 PB - Stahleisen GmbH CY - Düsseldorf AN - OPUS4-38580 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Comparison of experimental results and numerical simulations of penetration tests with damping concrete N2 - The shock absorbing material damping concrete is for the foundation in dry interim storage facilities for radioactive waste in Germany. In case of a potential cask drop damping concrete minimizes the mechanical loads to the cask. In course of safety analyzes this accident scenario is considered by numerical simulations using the finite element method. To get reliable results of numerical simulations a suitable material model is needed to take the characteristics of damping concrete into account. Due to the lack of sufficient material knowledge a research project was started to characterize the material’s behavior under different load conditions. This paper presents the test program to analyze the material behavior of damping concrete which is characterized by large volume change and strain rate hardening dependence. The determined Parameters were used to adapt an existing material model of the FE-code ABAQUS®. This model has to handle the mechanical damage behavior of damping concrete which occurs under compression and shear loads during a potential cask drop. To verify the material model numerical simulations are compared with dynamic penetration tests, which were conducted with specimens assembled similar to the real application of the damping concrete footings. The transferability of the material model to a real accident scenario was verified by a drop test with a full-scale cask on a damping concrete footing. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Drop test KW - Damping concrete KW - Cask KW - Material model PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A034, 1 EP - 6 PB - The American Society of Mechanical Engineers CY - New York AN - OPUS4-44042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard T1 - Determination of material parameters of damping concrete under dynamic loading N2 - The safety and integrity of casks for radioactive waste in accidental scenarios is analysed by BAM Federal institute tor Materials Research and Testing. An accidental scenario in German interim storage facilities is the drop from a crane during the handling operation. To reduce the mechanical loads to the cask a shock absorbing footing with high energy absorption capability is used in these areas. In order to analyse and evaluate such impact scenarios of casks, numerical simulations are performed. For a comprehensive simulation of an accidental scenario the behaviour of the damping concrete footing has to be taken into account as well and therefor a material model is needed. Material parameters under different loading conditions are the basis for a numerical model. For that reason a government funded research project (Kasparek, 2012) was conducted to characterise damping concrete under quasi-static as well as highly dynamic impact loading conditions. The performed tests include compression tests with and without lateral constraint small-scale and midscale penetration tests with different indenters, and finally a full-scale drop test onto a damping concrete footing. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Drop test KW - Damping concrete KW - Material characterisation PY - 2015 SP - 1 EP - 9 AN - OPUS4-33492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -