TY - JOUR A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Dynamic Fracture Mechanical Safety Assessment of Cask Designs PY - 2002 SN - 0957-476X VL - 13 IS - 3-4 SP - 291 EP - 296 PB - Nuclear Technology Publ. CY - Ashford, Kent AN - OPUS4-2807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Völzke, Holger A1 - Wieser, Günter A1 - Qiao, Linan T1 - Safety Margins of Spent Fuel Transport and Storage Casks Considering Aircraft Crash Impacts PY - 2002 SN - 0957-476X VL - 13 IS - 3-4 SP - 313 EP - 316 PB - Nuclear Technology Publ. CY - Ashford, Kent AN - OPUS4-2697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ballheimer, Viktor A1 - Droste, Bernhard A1 - Wieser, Günter A1 - Qiao, Linan T1 - Spent fuel transport associated with other dangerous goods in regular train units - assessment of hypothetical explosion impacts KW - Transport spent fuel cask KW - Accident KW - Blast wave KW - Finite element analysis PY - 2004 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 15 IS - 3-4 SP - 239 EP - 245 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-11975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Development of assessment methods for transport and storage containers with a higher content of recycled metal KW - Ductile iron KW - Container design KW - Safety assessment KW - Fracture mechanics KW - Dynamic loading conditions PY - 2004 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 15 IS - 3-4 SP - 215 EP - 221 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-11551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wieser, Günter A1 - Qiao, Linan A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Droste, Bernhard T1 - Safety analysis of casks under extreme impact conditions KW - Aircraft crash KW - Impact load KW - Simulation KW - Lid-seal system KW - Storage cask KW - Metallic seal KW - Leakage rate PY - 2004 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 15 IS - 2 SP - 141 EP - 147 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-14441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wieser, Günter A1 - Qiao, Linan A1 - Eberle, Arno A1 - Völzke, Holger T1 - Thermomechanical Finite-Element Analyses of Bolted Cask Lid Structures KW - Aircraft crash KW - Fire load KW - Simulation KW - Lid-seal system KW - Storage cask KW - Metallic seal KW - Leakage rate PY - 2004 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 15 IS - 3-4 SP - 223 EP - 230 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-14440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Neumann, Martin A1 - Komann, Steffen A1 - Ballheimer, Viktor T1 - Dynamic and quasi-static FE calculation of impact from 9 metre drop of spent fuel transport cask N2 - The drop from 9 m height onto a rigid target is one of the required proofs of safety for packages of radioactive materials. Direct dynamic finite element method (FEM) calculations and combined two step analytical quasi-static finite element (FE) calculations are both applied for the simulation of a 9 m drop test. This paper gives a comparative example of both approaches for the 9 m side drop simulation of the spent fuel transport cask with wood filled impact limiter. The model for dynamic FEM consists of cask body and impact limiter. Detailed material properties and geometry descriptions from each component of the impact limiter are required. The results (stress fields in the cask body) are obtained directly from the calculation. The combined method provides as intermediate results the force-deformation characteristic of impact limiter. The maximum impact limiter force determined by the law of energy conservation during the drop is then - in a second step - applied on the cask body in a quasi-static FE model in order to calculate the stresses. In this paper, the rigid body deceleration and the maximum stress in the middle of the cask body are used for the comparison between the dynamic FEM and the combined method. Similar maximum rigid body deceleration-time curves were obtained by both methods for the horizontal 9 m free fall. Concerning the stress in the cask body the dynamic FEM results oscillate about values calculated by the combined quasi-static approach. If the combined quasi-static approach is used in the safety assessment of a cask, a suitable factor has to be applied on its results to take into account the additional dynamic effects. KW - Drop test KW - Spent fuel transport cask KW - Finite element calculation KW - Dynamic simulation KW - Impact limiter KW - Wood PY - 2009 DO - https://doi.org/10.1179/174650909X12553336148026 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 20 IS - 4 SP - 174 EP - 178 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-20819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Mechanical assessment within type B packages approval: application of static and dynamic calculation approaches N2 - This paper demonstrates exemplarily how numerical and experimental approaches can be combined reasonably in mechanical assessment of package integrity according to the IAEA regulations. The paper also concentrates on the question about how static mechanical approaches can be applied, and what their problems are in relation to dynamic calculation approaches. Under defined impact tests, which represent accident transport conditions, the package has to withstand impact loading, e.g. resulting from a 9 m free drop onto an unyielding target in sequence with a 1 m puncture drop test. Owing to the local character of the interaction between the puncture bar and the cask body, it is possible to develop a dynamic numerical model for the 1 m puncture drop which allows an appropriate simulation of the interaction area. Results from existing experimental drop tests with prototype or small scale cask models can be used for verification and validation of applied analysis codes and models. The link between analysis and experimental drop testing is described exemplarily by considering a regulatory 1 m puncture bar drop test onto the cask body of a recently approved German high level waste transport package. For the 9 m drop test of the package, it is difficult to develop a dynamic numerical model of the package due to the complexity of the interaction between cask body, impact limiters and unyielding target. Dynamic calculations require an extensive verification with experimental results. The simulation of a 9 m drop of a package with impact limiters is thereby often more complex than the simulation of a 1 m puncture drop onto the cask body. A different approximation method can be applied for the consideration of dynamic effects on the impact loading of the package. In a first step, maximum impact force and rigid body deceleration of the cask body during the impact process can be calculated with simplified numerical tools. This rigid body deceleration can subsequently be applied on a verified static numerical model. Dynamic effects, which cannot be covered by the static numerical analysis, have therefore to be considered by using an additional dynamic factor. The paper describes this approach exemplarily for a 9 m horizontal drop of a typical spent fuel cask design. KW - Package assessment KW - Package KW - Packaging KW - Structural analysis PY - 2011 DO - https://doi.org/10.1179/1746510911Y.0000000012 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 4 SP - 179 EP - 183 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-26448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe T1 - Application of a Modified Arrhenius Equation to Describe the Time-Temperature Equivalence in Relaxation Analysis of Metal Seals N2 - For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor α. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/ϑ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/ϑ) is nonlinear in the ‘Arrhenius plot’. In those cases, the monotone change of the nonlinear range in the ‘Arrhenius plot’ can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature. KW - Metal seals KW - TTS principle KW - Arrhenius equation KW - Non-linear Arrhenius behavior KW - Relaxation analysis KW - Seal force PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446759 UR - http://www.davidpublisher.org/index.php/Home/Article/index?id=33931.html DO - https://doi.org/10.17265/1934-7359/2017.09.004 SN - 1934-7359 VL - 11 IS - 9 SP - 853 EP - 861 PB - David Publishing Company CY - USA, NY 10989, Valley Cottage AN - OPUS4-44675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -