TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Comparison of experimental results and numerical simulations of penetration tests with damping concrete N2 - The shock absorbing material damping concrete is for the foundation in dry interim storage facilities for radioactive waste in Germany. In case of a potential cask drop damping concrete minimizes the mechanical loads to the cask. In course of safety analyzes this accident scenario is considered by numerical simulations using the finite element method. To get reliable results of numerical simulations a suitable material model is needed to take the characteristics of damping concrete into account. Due to the lack of sufficient material knowledge a research project was started to characterize the material’s behavior under different load conditions. This paper presents the test program to analyze the material behavior of damping concrete which is characterized by large volume change and strain rate hardening dependence. The determined Parameters were used to adapt an existing material model of the FE-code ABAQUS®. This model has to handle the mechanical damage behavior of damping concrete which occurs under compression and shear loads during a potential cask drop. To verify the material model numerical simulations are compared with dynamic penetration tests, which were conducted with specimens assembled similar to the real application of the damping concrete footings. The transferability of the material model to a real accident scenario was verified by a drop test with a full-scale cask on a damping concrete footing. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Drop test KW - Damping concrete KW - Cask KW - Material model PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A034, 1 EP - 6 PB - The American Society of Mechanical Engineers CY - New York AN - OPUS4-44042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Völzke, Holger ED - Brandt, A. M. ED - Olek, J. ED - Glinicki, M. A. ED - Leung, C.K.Y. ED - Lis, J. T1 - Crushable foam model with pressure and stress-triaxiality dependent damage mechanisms for damping concrete N2 - Damping concrete with high energy absorption capability consists of a cement matrix with embedded small polystyrene balls and is investigated experimentally and numerically under high static compression with and without clamping. A material model is derived which describes the fundamental effects of damping concrete like non-linear elastic-plastic behaviour, volume change, volume strain dependent hardening as well as shear failure with an adequate description of damage initiation and evolution. The suggested material model is validated by simulation of penetration tests. T2 - BMC-11, International Symposium on Brittle Matrix Composites CY - Warsaw, Poland DA - 28.09.2015 KW - Damping concrete KW - Impact load KW - Crushable foam material model KW - Damage PY - 2015 SN - 978-83-89687-96-8 SP - 269 EP - 277 PB - Inst Fundamental Technological Research, Polish Acad Sciences CY - Warschau AN - OPUS4-34613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Describing Relaxation Behavior of Metal Seals Using Time-Temperature Superposition Principle N2 - In order to study the time- and temperature-dependent long-term behavior of metal seals, experimental investigations on special metal seals have been carried out at five different temperatures in a temperature range between 20 and 150°C for more than 7 years. Experimental results indicate a noticeable change of relevant sealing properties like seal force and usable resilience depending on time and temperature. In this study, the metal seals are treated as a homogeneous material block so that the identified decrease in seal force can be treated as a material relaxation effect. For the time-dependent behavior of seal force, an enhanced power-law model is introduced for the first time and is compared with the currently used power-law model. Additionally, regarding the influence of temperature, the timetemperature superposition principle is applied to metal seals for the first time with a clearly defined process. Thus, possible mistakes in the application of principle could be avoided. The introduced method is widely available for different applications regarding effects the principle with time and temperature. KW - Metal seals KW - Relaxation KW - Thermo-viscoplasticity KW - Time-temperature superposition PY - 2018 UR - https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001424 U6 - https://doi.org/10.1061/(ASCE)EM.1943-7889.0001424 SN - 0733-9399 VL - 144 IS - 4 SP - 04018016-1 EP - 04018016-8 PB - American Society of Civil Engineers AN - OPUS4-44676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Völzke, Holger T1 - Dynamic finite element analysis of cask handling accidents at storage sites N2 - The safety assessment of casks for radioactive material at interim storage facilities or in final repositories includes the investigation of possible handling accidents if clearly defined test conditions are not available from the regulations. Specific handling accidents usually are the drop of a cask onto the transport vehicle or the floor as well as the collision with the wall of the storage building or another cask. For such load cases an experimental demonstration of cask safety would be difficult. Therefore, numerical analyses of the entire load scenario are preferred. The lessons learnt from dynamic finite element analyses of accident scenarios with thick-walled cubical containers or cylindrical casks are presented. The dependency of calculation results on initial and boundary conditions, material models, and contact conditions is discussed. Parameter sets used should be verified by numerical simulation of experimentally investigated similar test scenarios. On the other hand, decisions have to be made whether a parameter or property is modeled in a realistic or conservative manner. For example, a very small variation of the initial impact angle of a container can cause significantly different stresses and strains. In sophisticated cases an investigation of simpler limit load scenarios could be advantageous instead of analyzing a very complicated load scenario. T2 - ASME 2015 Pressure vessels & piping conference - PVP2015 CY - Boston, Massachusetts, USA DA - 19.07.2015 KW - Finite element method KW - Simulation KW - Cask handling accident KW - Interim storage PY - 2015 SN - 978-0-7918-5702-1 SP - Paper 45606, 1 EP - 10 AN - OPUS4-34937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wieser, Günter A1 - Qiao, Linan T1 - FEM Simulation of extreme thermal and mechanical accident loads on screwed spent fuel cask lid structures T2 - ASME Pressure Vessels and Piping Division Conference 2006 CY - Vancouver, Canada DA - 2006-07-23 KW - Thermo-mechanische Kopplung KW - Extreme thermische und mechanische Lastfunktionen KW - Gefahrgutbehälter KW - Finite-Element Methode PY - 2006 SP - 1 EP - 7(?) PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-14439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Völzke, Holger T1 - Influence of impact angle and real target properties on drop test results of cubic containers N2 - Drop test scenarios with cubic containers without impact limiters at interim storage sites or in a final repository have been investigated by numerical simulations. An ideally flat drop is impossible to conduct as a free fall of a container even under laboratory conditions. Dynamic stresses and strains inside the container structure are sensitive to the impact angle. Even very small impact angles cause remarkable changes in the experimental or numerical results when a flat bottom or wall of a container hits a flat target. For drop tests with transport packages the International Atomic Energy Agency (IAEA) regulations define an essentially unyielding target. In contrast, potential accident scenarios for storage containers are derived from site-specific safety analyses or acceptance criteria in Germany. Each interim storage site or repository has a yielding or so-called real target with individual structural and material properties. The real target acts as a kind of impact limiter. A more conservative container design is required if the impact limiting effect of the target is not considered. T2 - ASME 2017 Pressure Vessels and Piping Conference CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Finite element method KW - Simulation KW - Drop test KW - Impact angle KW - Real target KW - Yielding target PY - 2017 SN - 978-0-7918-5802-8 U6 - https://doi.org/10.1115/PVP2017-65731 VL - 7 SP - Article UNSP V007T07A039, 1 EP - 9 AN - OPUS4-43631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marotzke, Christian A1 - Qiao, Linan T1 - Interfacial Crack Propagation arising in Single-Fiber Pull-Out Tests PY - 1997 SN - 0266-3538 VL - 57 SP - 887 EP - 897 PB - Elsevier CY - Barking AN - OPUS4-6830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian T1 - Introduction of a Power Law Time-Temperature Equivalent Formulation for the Description of Thermorheologically Simple and Complex Behavior N2 - Abstract: In this work, a conceptual framework is suggested for analyzing thermorheologically simple and complex behavior by using just one approach. Therefore, the linear relation between master time and real time which is required in terms of the time-temperature superposition principle was enhanced to a nonlinear equivalent relation. Furthermore, we evaluate whether there is any relation among well-known existing time-temperature equivalent formulations which makes it possible to generalize different existing formulations. For this purpose, as an example, the power law formulation was used for the definition of the master time. The method introduced here also contributes a further framework for a unification of established time-temperature equivalent formulations, for example the time-temperature superposition principle and time-temperature parameter models. Results show, with additional normalization conditions, most of the developed time-temperature parameter models can be treated as special cases of the new formulation. In the aspect of the arrow of time, the new defined master time is a bended arrow of time, which can help to understand the corresponding physical meaning of the suggested method. KW - bended arrow of time KW - time-temperature superposition principle KW - time-temperature equivalent formulation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543800 VL - 15 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Kasparek, Eva Maria A1 - Völzke, Holger T1 - Modeling of cylindrical casks under horizontal drop test conditions N2 - Cylindrical casks made of ductile cast iron are used for transport, interim storage and final disposal of radioactive waste in Germany. A basic design criterion is the ability to withstand a horizontal drop without impact Binders onto a foundation representative for the real ground of a storage facility. The increasing use of more cost-effective material compositions requires optimized cask geometries to reduce stresses and strains in the cask structure. For example, a non-uniform wall thickness was introduced to reduce maximum wall bending stresses. As a result, the load characteristics changed from line load to point load at bottom and lid side under horizontal drop fest conditions. Hereby, the position of highest stress inside the structure has shifted significantly. This was the reason for a systematic investigation of effects caused by small design changes or small variations of fest conditions. It led to a better understanding of the positions of high local stresses, their time history and maximum value for cylindrical casks under horizontal drop test conditions. Hence, the paper presents the lessons learnt from modeling and simulating such scenarios considering an impact without limiters onto a realistic target. T2 - 14th International high-level radioactive waste management conference CY - Albuquerque, New Mexico, USA DA - 28.04.2013 KW - Cylindrical cask KW - Ductile cast iron KW - Numerical simulation KW - Horizontal drop test KW - Storage facility KW - Concrete foundation PY - 2013 SN - 978-1-62748-644-6 SP - 1114 EP - 1119 (Paper # 6862) PB - Omnipress AN - OPUS4-28529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Kasparek, Eva Maria A1 - Völzke, Holger ED - Topping, B.H.V. ED - Iványi, P. T1 - Simulation of damping concrete under severe impact loads using a crushable foam model with damage mechanisms N2 - The deformation and damage behaviour of damping concrete under impact loading conditions is investigated experimentally and numerically. The material model is based on the assumption of crushable foam with volumetric or isotropic hardening combined with ductile and shear damage criteria. Model parameters are determined in static and dynamic compression tests of confined cubic specimens. The derived material model is validated by numerical simulation of penetration tests. The static and dynamic penetration of indenters into uniform as well as assembled bricks made of damping concrete is discussed. Finally, the successful calculation of a large-scale drop test with a heavy cask-like test object onto a realistic damping concrete foundation is demonstrated. T2 - 12th International conference on computational structures technology CY - Naples, Italy DA - 2014-09-02 KW - Damping concrete KW - Impact load KW - Crushable foam material model KW - Damage PY - 2014 SN - 978-1-905088-61-4 U6 - https://doi.org/10.4203/ccp.106.233 SN - 1759-3433 SP - Paper 233, 1 EP - 16 PB - Civil Comp Press AN - OPUS4-31480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Keller, Christian A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Three-dimensional finite element analysis of O-ring metal seals considering varying material properties and different seal diameters N2 - Metal seals of O-ring form are often used in lid-systems of transport and storage casks for radioactive waste in Germany. To investigate their mechanical behaviour, three dimensional (3D) finite element (FE) models were created using solid elements for all of the seal components. The material behaviour of each component is described with a unified static elastic-plastic material model. The total strain is defined as the sum of linear elastic strain and plastic strain with power-law hardening. The model was carefully validated by comparison of Simulation results with experimental results. The influence of material fluctuation of each seal component due to varying properties and the sensitivity of different seal diameters on the seal force are analysed and discussed. The results show that the material properties of helical spring have major influence on seal force and that the influence of seal diameters is negligible small in the studied range. This is very important to use the test results from seals with small diameter for the assessment of seal behaviour with larger diameter as used in transport and storage cask. KW - Sensitivity analysis KW - Transport and storage cask KW - O-ring metal seal KW - Lid-system KW - Finite element analysis KW - Stochastic variation of material properties PY - 2019 U6 - https://doi.org/10.1016/j.ijpvp.2019.103953 VL - 176 SP - 102953 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-49263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Wille, Frank A1 - Musolff, André ED - Topping, B.H.V. T1 - Validation of numerical simulation models for transport and storage casks using drop test results N2 - The safety assessment of new designs for transport and storage casks for radioactive materials is a challenging task accomplished using different methods such as prototype tests, model tests, calculations and analogy reflections. At BAM (Federal Institute for Materials Research and Testing), the test procedures for the mechanical IAEA (International Atomic Energy Agency) test conditions often start with preliminary finite element (FE) calculations mostly with a small-scale cask model for verification of the proposed test cask instrumentation and test plan. On that basis the extensive test cask instrumentation is applied and checked. After that, a series of drop tests consisting of different test sequences is performed. Following the drop tests, numerical post-analyses are carried out. These analyses offer the possibility of a detailed calculation and assessment of stresses and strains in the entire test cask construction. The calculation results have to be carefully compared with the measurement data over the impact history to find out all relevant parameters for a realistic simulation of the impact scenario. The desired ideal boundary test conditions often cannot be met exactly during the drop tests. Therefore, the numerical post-analyses are carried out by using the real boundary conditions of the drop tests. The objective is to find a validated model, where the results of the numerical simulations satisfactorily meet the experimental results. Under test conditions according to the IAEA transport regulations, casks are usually equipped with impact limiters and dropped onto a so-called unyielding target. In general, it is difficult to verify a complex FE model by using results from only one drop test because of the complex impact process and the complex structure of such packages. After each drop test, numerical post-analyses should be carried out. Only if all drop tests were simulated successfully by using the same FE model under different test conditions, it is possible to obtain a validated numerical model for further investigations. In this case the results of the numerical simulations meet satisfactorily the experimental results. In this paper a study is presented, where the influence of different components on the cask loading is investigated systematically. T2 - 11th International conference on computational structures technology CY - Dubrovnik, Croatia DA - 2012-09-04 KW - Impact KW - Simulation KW - Cask KW - Dop test KW - Finite element model KW - Validation KW - Dynamics KW - Transport and storage cask PY - 2012 U6 - https://doi.org/10.4203/ccp.99.273 SN - 1759-3433 IS - Paper 273 SP - 1 EP - 12 PB - Civil Comp Press AN - OPUS4-26537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -