TY - JOUR A1 - Schoder, S. A1 - Schröder, H. V. A1 - Cera, L. A1 - Puttreddy, R. A1 - Güttler, Arne A1 - Resch-Genger, Ute A1 - Rissanen, K. A1 - Schalley, C. A. T1 - Strong Emission Enhancement in pH-Responsive 2:2 Cucurbit[8]uril Complexes N2 - Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional conformational restriction of rotations around the aryl/aryl bonds. Because the cucurbituril complexes are pH switchable, this system represents an efficient supramolecular ON/OFF fluorescence switch. KW - Sensor KW - pH KW - Dye KW - Supramolecular chemistry KW - Synthesis KW - Host-guest interaction KW - Fluorescence KW - Enhancement KW - Curcubituril KW - Macrocyclus KW - Solid state PY - 2019 U6 - https://doi.org/10.1002/chem.201806337 SN - 0947-6539 VL - 25 IS - 13 SP - 3257 EP - 3261 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -