TY - JOUR A1 - Procop, Mathias T1 - Measurement of X-Ray Emission Efficiencies for K-Lines JF - Microscopy and microanalysis KW - X-ray spectrometry KW - X-ray emission KW - X-ray yield KW - Electron probe microanalysis KW - EMPA KW - Standardless analysis PY - 2004 DO - https://doi.org/10.1017/S1431927604040139 SN - 1431-9276 SN - 1435-8115 VL - 10 IS - 4 SP - 481 EP - 490 PB - Cambridge University Press CY - New York, NY AN - OPUS4-6838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Radtke, Martin A1 - Krumrey, M. A1 - Hasche, K. A1 - Schädlich, S. A1 - Frank, W. T1 - Electron probe microanalysis (EPMA) measurement of thin-film thickness in the nanometre range JF - Analytical and bioanalytical chemistry N2 - The thickness of thin films of platinum and nickel on fused silica and silicon substrates has been determined by EPMA using the commercial software STRATAGEM for calculation of film thickness. Film thickness ranged in the order 10 nm. An attempt was made to estimate the confidence range of the method by comparison with results from other methods of analysis. The data show that in addition to the uncertainty of the spectral intensity measurement and the complicated fitting routine, systematic deviation caused by the underlying model should be added. The scattering in the results from other methods does not enable specification of a range of uncertainty, but deviations from the real thickness are estimated to be less than 20%. KW - Electron probe microanalysis KW - EPMA KW - Thin films KW - Thickness measurement KW - X-rays PY - 2002 DO - https://doi.org/10.1007/s00216-002-1514-5 SN - 1618-2642 SN - 1618-2650 VL - 374 SP - 631 EP - 634 PB - Springer CY - Berlin AN - OPUS4-7090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Hübner, Wolfgang A1 - Wäsche, Rolf A1 - Nieland, S. A1 - Ehrmann, O. T1 - Fast Elemental Mapping in Materials Science JF - European microscopy and analysis KW - Electron probe microanalysis KW - EPMA KW - Energy dispersive X-ray spectroscopy KW - EDS KW - Elemental mapping PY - 2002 UR - http://www.microscopy-analysis.com/sites/default/files/magazine_pdfs/mag%20179_2002_Jan_Procop_1.pdf SN - 0958-1952 IS - January SP - 5 EP - 6 PB - Rolston Gordon Comm. CY - Bookham, Surrey AN - OPUS4-7091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Terborg, R. T1 - Measurement and calculation of x-ray production efficiencies for copper, zirconium, and tungsten JF - Microscopy and microanalysis N2 - Electron probe microanalysis (EPMA) is based on physical relations between measured X-ray intensities of characteristic lines and their Xray production efficiency, which depends on the specimen composition. The quality of the analysis results relies on how realistically the physical relations describe the generation and emission of X-rays. Special experiments are necessary to measure X-ray production efficiencies. A challenge in these experiments is the determination of the detection efficiency of the spectrometer as a function of the photon energy. An energy-dispersive spectrometer was used in this work, for which the efficiency was determined at metrological synchrotron beamlines with an accuracy of ±2%. X-ray production efficiencies for the L series and the Kα series of copper and zirconium and for the M and L series of tungsten were determined at energies up to 30 keV in a scanning electron microscope. These experimental values were compared with calculated X-ray production efficiencies using physical relations and material constants applied in EPMA. The objective of the comparison is the further improvement of EPMA algorithms as well as extending the available database for X-ray production efficiencies. Experimental data for the X-ray production efficiency are also useful for the assessment of spectrum simulation software. KW - Copper KW - Electron probe microanalysis KW - Tungsten KW - X-ray production efficiency KW - Zirconium PY - 2022 DO - https://doi.org/10.1017/S1431927622012351 VL - 28 IS - 6 SP - 1865 EP - 1877 PB - Oxford University Press CY - Oxford AN - OPUS4-55711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -