TY - JOUR A1 - Procop, Mathias A1 - Terborg, R. T1 - Measurement and calculation of x-ray production efficiencies for copper, zirconium, and tungsten JF - Microscopy and microanalysis N2 - Electron probe microanalysis (EPMA) is based on physical relations between measured X-ray intensities of characteristic lines and their Xray production efficiency, which depends on the specimen composition. The quality of the analysis results relies on how realistically the physical relations describe the generation and emission of X-rays. Special experiments are necessary to measure X-ray production efficiencies. A challenge in these experiments is the determination of the detection efficiency of the spectrometer as a function of the photon energy. An energy-dispersive spectrometer was used in this work, for which the efficiency was determined at metrological synchrotron beamlines with an accuracy of ±2%. X-ray production efficiencies for the L series and the Kα series of copper and zirconium and for the M and L series of tungsten were determined at energies up to 30 keV in a scanning electron microscope. These experimental values were compared with calculated X-ray production efficiencies using physical relations and material constants applied in EPMA. The objective of the comparison is the further improvement of EPMA algorithms as well as extending the available database for X-ray production efficiencies. Experimental data for the X-ray production efficiency are also useful for the assessment of spectrum simulation software. KW - Copper KW - Electron probe microanalysis KW - Tungsten KW - X-ray production efficiency KW - Zirconium PY - 2022 DO - https://doi.org/10.1017/S1431927622012351 VL - 28 IS - 6 SP - 1865 EP - 1877 PB - Oxford University Press CY - Oxford AN - OPUS4-55711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Procop, Mathias T1 - Check of Energy-Dispersive X-ray Spectrometers (EDS) Performance with the BAM Test Material EDSTM001/2 and BAM Software EDS Spectrometer Test N2 - The test material EDS-TM001 together with an accompanying software package, “EDX spectrometer check”, have been made available in 2009 by BAM to be employed by EDS (energy-dispersive X-ray spectrometer) users to check the performance of an EDS attached to the SEM. Particularly for test laboratories operating under accreditation schemes like ISO/IEC 17025, a periodical control of the critical instrumental parameters in end-user laboratories is required. With EDS-TM001 or EDS-TM002 (second generation) test material, this periodical check is simplified to the acquisition of only one 10 kV spectrum. The software “EDX spectrometer check” is destined to evaluate automatically this spectrum and determine the performance of the EDS in terms of energy resolution and calibration, as well as possible alteration of low-energy Efficiency due to detector contamination. Energy resolution can be compared with the specified values according to the international ISO standard ISO 15632:2012. EDS-TM is a synthetic material consisting of a 6 μm thick layer of C, Al, Mn, Cu and Zr deposited on a steel (in case of EDS-TM001) or silicon (in case of EDS-TM002) substrate. The chemical composition of EDS-TM was chosen such as to give nearly equal intensities of the low energy lines in a 10 kV spectrum, thus, making it very sensitive against spectrometer efficiency changes. Meanwhile, about 150 laboratories use the EDS-TM001 or EDS-TM002 test material for the periodical check of their EDS. A detailed description of the test material and software together with examples of application was published recently. New results and gained experiences will be presented as well. When the FWHM of the X-ray lines in the EDS-TM spectrum are determined, the spectrum background must be subtracted accurately. The applied physical background subtraction procedure is robust and takes into account the transmission of the detector window. While the previous version considers only Moxtek AP windows, the new version includes selection of silicon Nitride window and the case of windowless detector. Moreover, the new version allows importing of spectra in Bruker spx-format and EMSA/MSA files from EDAX TEAM software. Windowless detectors have been also tested demonstrating long-term stability after repeated heating and cooling cycles. In this case, the appropriate Background subtraction is decisive for accurate detector characterization. Detailed results will be presented. T2 - EMAS 2019 - 16th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Trondheim, Norway DA - 19.05.2019 KW - EDS KW - Test material KW - Software KW - Spectrometer check KW - X-ray spectroscopy PY - 2019 AN - OPUS4-48103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Hodoroaba, Vasile-Dan T1 - Uncertainties in secondary fluorescence correction in EPMA JF - Microscopy and Microanalysis N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. KW - EPMA KW - Secondary fluorescence correction KW - Uncertainties KW - Microanalysis PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/uncertainties-in-secondary-fluorescence-correction-in-epma/AA92E973D350A74C574067AAFB2D9044 DO - https://doi.org/10.1017/S1431927619012534 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2360 EP - 2361 PB - Cambridge University Press AN - OPUS4-48863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Procop, Mathias T1 - Check of the performance of EDS systems attached to the SEM with the test material EDS-TM001/2 and evaluation software package EDS spectrometer test - Application, experiences and updates JF - Microscopy and Microanalysis N2 - The test material EDS-TM001 together with an accompanying software package, “EDX spectrometer check”, have been made available in 2009 by BAM to be employed by EDS (energy dispersive spectrometer) users to check the performance of an EDS attached to the SEM. Particularly for test laboratories operating under accreditation schemes like ISO/IEC 17025, a periodical control of the critical instrumental parameters in end-user laboratories is required. With EDS-TM001 or EDS-TM002 (second generation) test material, this periodical check is simplified to the acquisition of only one 10 kV spectrum. The software “EDX spectrometer check” is destined to evaluate automatically this spectrum and determine the performance of the EDS in terms of energy resolution and calibration as well as possible alteration of low-energy efficiency due to detector contamination. Energy resolution can be compared with the specified values according to the international ISO standard ISO 15632:2012. EDS-TM is a synthetic material consisting of a thick layer of C, Al, Mn, Cu and Zr in a well-defined composition, deposited on a steel (in case of EDS-TM001) or silicon (in case of EDS-TM002) substrate. Meanwhile, more than one hundred laboratories use the EDS-TM001 or EDS-TM002 test material for the periodical check of their EDS. A detailed description of the test material and software together with examples of application was published recently. New results and gained experiences will be presented as well. When the FWHM of lines appearing in the EDS-TM spectrum are determined, the spectrum background must be subtracted accurately. The applied physical background subtraction procedure is robust and takes into account the transmission of the detector window. While the previous version considers only Moxtek AP windows, the new version includes selection of silicon nitride window and the case of windowless detector. Moreover, the new version allows importing of spectra in Bruker spx format and EMSA/MSA files from EDAX TEAM software. KW - EDS KW - Performance check KW - SEM KW - Test material KW - X-ray spectrometer PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/check-of-the-performance-of-eds-systems-attached-to-the-sem-with-the-test-material-edstm0012-and-evaluation-software-package-eds-spectrometer-test-application-experiences-and-updates/3D01FDC765C3ECD734CB8DEC7081DAE2 DO - https://doi.org/10.1017/S1431927618004142 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August) SP - 730 EP - 731 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-46006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Procop, Mathias T1 - Theoretical calculation and experimental determination of x-ray production efficiencies for copper, zirconium, and tungsten JF - Microscopy and microanalysis N2 - The X-ray intensities of the K-, L- and M-lines of copper, zirconium and tungsten have been measured with an energy-dispersive X-ray spectrometer of known efficiency as function of photon energy. X-ray production efficiencies were determined from the measured intensities for Kα- and L-series of Cu and Zr and for the L- and M-series of W. These data were compared to calculated X-ray production efficiencies based on the widely used matrix correction models of Pouchou and Pichoir (XPP) and Bastin (PROZA96). Our results indicate that a replacement of the stopping power in the PROZA96 algorithm by expressions of Joy and Jablonski has only a minor influence on the calculated X-ray production efficiencies. In contrast, the modifications of the ionization cross-section show a stronger effect. We replaced the ionization cross-sections for K lines of the PROZA96 algorithm with different models. The results for L- and M-Lines are different. For the L-lines of Cu the original XPP and PROZA96 models show the best agreement while using the Bote cross-sections result in an overestimation. For the Zr-L and W-L1, -L2, -L3 X-ray production efficiencies, the Bote cross-sections lead to a significant improvement compared to all other models. The original XPP model represents the best agreement for the M5 efficiencies but underestimates the M4 efficiencies. There is no superior model or modification because the parameter sets in the models need to be aligned to each other. However, using the ionization cross-sections of Bote, which are based on quantum mechanical calculations, show promising results in many cases. KW - X-ray production efficiency KW - EPMA KW - Copper KW - Zirconium KW - Tungsten PY - 2023 DO - https://doi.org/10.1093/micmic/ozad067.110 SN - 1435-8115 VL - 29 IS - Supplement 1 SP - 245 EP - 246 PB - Oxford University Press CY - Oxford AN - OPUS4-58339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -