TY - JOUR A1 - Vogl, Jochen A1 - Rosner, Martin A1 - Pritzkow, Wolfgang T1 - The need for new isotope reference materials N2 - Isotope reference materials are needed to calibrate and validate analytical procedures used for the determination of isotope amount ratios, procedurally defined isotope ratios or so-called δ values. In contrast to the huge analytical progress in isotope ratio analytics, the production of isotope reference materials has not kept pace with the increasing needs of isotope analysts. Three representative isotope systems are used to explain the technical and non-technical difficulties and drawbacks, on one hand, and to demonstrate what can be achieved at its best, on the other hand. A clear statement is given that new isotope reference materials are needed to obtain traceable and thus comparable data, which is essential for all kinds of isotope research. The range of available isotope reference materials and δ reference materials should be increased and matrix reference materials certified for isotope compositions or δ values, which do not exist yet, should be provided. KW - Isotope reference materials KW - Delta reference materials KW - Synthetic isotope mixtures KW - Mass spectrometry KW - Comparability KW - Traceability KW - Measurement uncertainty PY - 2013 U6 - https://doi.org/10.1007/s00216-012-6605-3 SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 9 SP - 2763 EP - 2770 PB - Springer CY - Berlin AN - OPUS4-28169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope reference materials for present and future isotope research N2 - Isotope reference materials are essential to enable reliable and comparable isotope data. This article reviews the work in this field within the past years. The focus is on all stable elements, except for classical stable isotopes (H, C, N, O, S) and for radioactive elements. Currently available isotope reference materials are listed. The limitations of synthetic isotope mixtures being used to characterize these materials are discussed, as well as the limitations of the isotope reference materials, such as uncertainty and homogeneity. The needs for present research on isotope variations are being considered and are compared to the limitations of current isotope reference materials. This disagreement between both can only be solved by providing isotope reference materials defining a δ-scale for each element of interest. Such materials should be provided with additional data on isotope abundances whenever possible. As an outlook a possible outline for a new program on isotope reference materials is discussed. KW - IRM KW - Isotope reference materials KW - Delta-RM KW - ICPMS KW - TIMS KW - Synthetic mixtures PY - 2010 U6 - https://doi.org/10.1039/c000509f SN - 0267-9477 SN - 1364-5544 VL - 25 SP - 923 EP - 932 PB - Royal Society of Chemistry CY - London AN - OPUS4-21841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosner, Martin A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen A1 - Voerkelius, S. T1 - Development and validation of a method to determine the boron isotopic composition of crop plants N2 - We present a comprehensive chemical and mass spectrometric method to determine boron isotopic compositions of plant tissue. The method including dry ashing, a three-step ion chromatographic boron–matrix separation, and 11B/10B isotope ratio determinations using the Cs2BO2+ graphite technique has been validated using certified reference and quality control materials. The developed method is capable to determine δ11B values in plant tissue down to boron concentrations of 1 mg/kg with an expanded uncertainty of ≤1.7‰ (k = 2). The determined δ11B values reveal an enormous isotopic range of boron in plant tissues covering three-quarters of the natural terrestrial occurring variation in the boron isotopic composition. As the local environment and anthropogenic activity mainly control the boron intake of plants, the boron isotopic composition of plants can be used for food provenance studies. KW - Boron isotope variations KW - Delta-scale KW - Stable isotopes KW - Isotope reference materials KW - Provenance KW - Authenticity PY - 2011 U6 - https://doi.org/10.1021/ac102836h SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 7 SP - 2562 EP - 2568 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -