TY - JOUR A1 - Schmalenberger, A. A1 - Pritzkow, Wolfgang A1 - Ojeda, J.J. A1 - Noll, Matthias T1 - Characterization of main sulfur source of wood-degrading basidiomycetes by S K-edge X-ray absorption near edge spectroscopy (XANES) N2 - The main wood degraders in aerobic terrestrial ecosystems belong to the white- and brown-rot fungi, where their biomass can be created on wood decay only. However, total sulfur (S) concentration in wood is very low and only little is known about the different sulfur compounds in wood today. Sulfur-starved brown-rot fungi Gloeophyllum trabeum and Oligoporus placenta were incubated on sterilized pine wood blocks whereas Lentinus cyathiformis and the white-rot fungi Trametes versicolor were incubated on sterilized beech wood blocks. After 19 weeks of incubation, the S oxidation status was analyzed in wood, in degraded wood, and in biomass of wood-degrading fungi by synchrotron based S K-edge XANES, and total S and sulfate were quantified. Total sulfur and sulfate content in pine wood blocks were approximately 50 and 1 µg g-1, respectively, while in beech wood approximately 100 and 20 µg g-1 were found, respectively. Sulfur in beech was dominated by sulfate-esters. In contrast, pine wood also contained larger amounts of reduced S. Three out of four selected fungi caused a reduction of the S oxidation state in wood from oxidized S (sulfate-ester, sulfate) to intermediate S (sulfonate, sulfoxide) or reduced S (thiols, e.g., proteins, peptides, enzyme cofactors). Only O. placenta shifted thiol to sulfonate. Growth experiments of these fungi on selective minimal media showed that in particular cysteine (thiol), sulfonates, and sulfate enhanced total mycelium growth. Consequently, wood-degrading fungi were able to utilize a large variety of different wood S sources for growth but preferentially transformed in vivo sulfate-esters and thiol into biomass structures. KW - Basidiomycetes KW - Fungi KW - S K-edge X-ray absorption near edge spectroscopy (XANES) KW - Sulfur oxidation status KW - Sulfate-esters PY - 2011 U6 - https://doi.org/10.1016/j.ibiod.2011.08.013 SN - 0964-8305 VL - 65 IS - 8 SP - 1215 EP - 1223 PB - Elsevier CY - Barking AN - OPUS4-27546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herwig, Nadine A1 - Stephan, Kristin A1 - Panne, Ulrich A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen T1 - Multi-element screening in milk and feed by SF-ICP-MS N2 - In this study, an analytical procedure for multi-element screening of 40 elements in milk and feed samples was developed. Three different digestion and two different calibration methods were tested for the best suitability. The analytical procedure for the quantification of minor and trace elements is based on sector field ICP-MS (SF-ICP-MS). The method validation revealed good agreement between the determined elemental mass fractions and the certified values of two milk and three feed reference materials. Milk samples of dairy cows at different feeding regimes were collected from two different farms. The results of our study showed significant differences of nine elemental mass fractions (Li, P, Mn, Co, Cu, Rb, Sr, Br, I) between milk from the two locations. Further, a correlation between the elemental mass fractions of milk and the ingested feed and water was observed. KW - Multi-element screening KW - SF-ICP-MS KW - Dairy cows KW - Milk KW - Feed KW - Water PY - 2011 U6 - https://doi.org/10.1016/j.foodchem.2010.07.050 SN - 0308-8146 VL - 124 IS - 3 SP - 1223 EP - 1230 PB - Elsevier Ltd. CY - Amsterdam [u.a.] ; Jena AN - OPUS4-22042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weißhaupt, Petra A1 - Pritzkow, Wolfgang A1 - Noll, Matthias T1 - Nitrogen metabolism of wood decomposing basidiomycetes and their interaction with diazotrophs as revealed by IRMS N2 - Isotope ratio mass spectrometry (IRMS) is an advanced method to investigate carbon (C) and nitrogen (N) in organic samples. In particular, the N content, its isotope signature and the C/N ratio reveal important facts of nutrient cycling, niche separation and ecological food webs. In this study, the characteristics of N turnover of wood decomposing microorganisms were investigated. The growth of the white rot causing basidiomycete Trametes versicolor is enhanced after addition of ammonia or urea, whereas the brown rot causing Oligoporus placenta is not accelerated. In addition, an interaction of each fungus with atmospheric N2 assimilating (diazotrophic) bacteria was investigated. Cultivation experiments with a gas mixture of 15N2/O2 and subsequent IRMS analysis of dry biomass of the diazotrophs Azotobacter croococcum, Beijerinckia acida and Novosphingobium nitrogenifigens revealed that they assimilated up to 12% of their N from N2. The experiments reflected N availability as a prerequisite for efficient growth of decomposing basidiomycetes and diazotrophs. Fungal–bacterial co-cultivation experiments showed that depending on the growth characteristics and bacterial N2 assimilation activity N is transferred from certain bacteria into fungal biomass. Thus, the experiments gave a first indication of an interaction between wood decomposing basidiomycetes and diazotrophs, which is a novel pathway of fungal N acquisition. KW - IRMS KW - Isotope labeling KW - Microbial interaction KW - N2 assimilation KW - Nitrogen KW - Wood decomposing basidiomycetes PY - 2011 U6 - https://doi.org/10.1016/j.ijms.2010.12.011 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 307 IS - 1-3 SP - 225 EP - 231 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, Martin A1 - Pritzkow, Wolfgang T1 - Development and validation of a single collector SF-ICPMS procedure for the determination of boron isotope ratios in water and food samples N2 - Boron isotope studies on technical materials and geological and environmental samples are one hot topic in nowadays isotope research. Provenance studies of artefacts, food and other products might become another one, as several recent studies demonstrate. Typically boron isotope determinations have been carried out by TIMS. To open up this research field to a broader scientific community we developed two analytical procedures for boron isotope determinations based on single collector SF-ICPMS combined with a sample preparation procedure consisting of dry-ashing and a three step ion chromatographic boron-matrix separation. The developed procedures consist of one low resolution (LR) and one medium resolution (MR) procedure. The repeatability for the δ11B determination in three independently measured aliquots lies between 0.2 and 0.8‰ for the LR procedure and between 0.3 and 1.5‰ for the MR procedure. The expanded uncertainties with a coverage factor of k=2 range between 1.4 and 1.6‰ for the LR procedure and between 2.9 and 3.2‰ for the MR procedure. The accuracy, expressed as average deviation from the reference values, is 0.43‰ for the LR procedure and 0.33‰ for the MR procedure. To test the practicability of the procedures the matrix tolerance has been investigated as well and was found to be up to 2 mg kg-1 of alkaline and alkaline earth elements in the final measurement solution containing 100 µg kg-1 boron. Thus a highly efficient matrix separation for SF-ICPMS boron isotope determinations is required, similar to TIMS. PY - 2011 U6 - https://doi.org/10.1039/c0ja00220h SN - 0267-9477 SN - 1364-5544 VL - 26 IS - 4 SP - 861 EP - 869 PB - Royal Society of Chemistry CY - London AN - OPUS4-23419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosner, Martin A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen A1 - Voerkelius, S. T1 - Development and validation of a method to determine the boron isotopic composition of crop plants N2 - We present a comprehensive chemical and mass spectrometric method to determine boron isotopic compositions of plant tissue. The method including dry ashing, a three-step ion chromatographic boron–matrix separation, and 11B/10B isotope ratio determinations using the Cs2BO2+ graphite technique has been validated using certified reference and quality control materials. The developed method is capable to determine δ11B values in plant tissue down to boron concentrations of 1 mg/kg with an expanded uncertainty of ≤1.7‰ (k = 2). The determined δ11B values reveal an enormous isotopic range of boron in plant tissues covering three-quarters of the natural terrestrial occurring variation in the boron isotopic composition. As the local environment and anthropogenic activity mainly control the boron intake of plants, the boron isotopic composition of plants can be used for food provenance studies. KW - Boron isotope variations KW - Delta-scale KW - Stable isotopes KW - Isotope reference materials KW - Provenance KW - Authenticity PY - 2011 U6 - https://doi.org/10.1021/ac102836h SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 7 SP - 2562 EP - 2568 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope reference materials for present and future isotope research N2 - The variation of isotope abundance ratios is increasingly used to unravell natural and technical questions. In the past the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance and authenticity of food, the number of published isotope data strongly increased. The development of inductively coupled plasma mass spectrometers (ICPMS) from an instrument for simple quantitative analysis to highly sophisticated isotope abundance ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reproducible isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICPMS. Especially for such user isotope reference materials (IRM) are indispensible to enable a reliable method validation. The fast development and the broad availability of ICPMS also lead to an expansion of the classical research areas and new elements are under investigation. Here all users require IRM to correct for mass fractionation or mass discrimination or at least to enable isotope data related to a common accepted basis. Despite this growing interest suitable IRM are still lacking for a number of isotope systems such as magnesium. PY - 2011 SN - 1471-8022 VL - 75 IS - 3 SP - 2098 PB - Mineralogical Society of Great Britain and Ireland CY - London AN - OPUS4-32683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -