TY - JOUR A1 - Ecker, Klaus A1 - Wätjen, U. A1 - Berger, Achim A1 - Persson, L. A1 - Pritzkow, Wolfgang A1 - Radtke, Martin A1 - Riesemeier, Heinrich T1 - RBS, SY-XRF, INAA and ICP-IDMS of antimony implanted in silicon - A multi-method approach to characterize and certify a reference material JF - Nuclear instruments and methods in physics research B N2 - A layer of Sb atoms, implanted with an energy of 400 keV and a nominal dose of 5×1016 atoms/cm2 into a high purity silicon wafer, was certified for its areal density (atoms/cm2) using Rutherford backscattering spectrometry (RBS), instrumental neutron activation analysis (INAA) and inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) and for its isotope ratio using INAA and ICP-IDMS. Excellent agreement between the results of the different independent methods was found. In the present work, the measurements of the homogeneity of the areal density of Sb, previously determined with RBS in spots having 1 mm diameter, are improved with synchrotron X-ray fluorescence analysis: Higher precision in even smaller sample spots allows to estimate a reduced inhomogeneity of the whole batch of samples of the order of only 0.4%. Thus the uncertainty of the certified value can further be reduced. Down to fractions of a chip with 0.3×0.4 mm2 area, the areal density is now certified as (4.81±0.06)×1016 Sb atoms/cm2, where the expanded uncertainty 0.06 (coverage factor k=2) corresponds to only 1.2%. The relative merits of the different analytical methods are discussed. KW - Certified reference material KW - RBS KW - INAA KW - ICP-IDMS KW - XRF KW - SY-XRF PY - 2002 DO - https://doi.org/10.1016/S0168-583X(01)01038-2 SN - 0168-583X SN - 1872-9584 VL - 188 IS - 1-4 SP - 120 EP - 125 PB - Elsevier CY - Amsterdam AN - OPUS4-13870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weißhaupt, Petra A1 - Pritzkow, Wolfgang A1 - Noll, Matthias T1 - Nitrogen sources of oligoporus placenta and trametes versicolor evaluated in a 2³ experimental plan JF - Fungal biology N2 - Four full-factorial 2³ experimental plans were applied to evaluate the nitrogen (N) sources of Oligoporus placenta and Trametes versicolor and their interaction with the atmospheric N2-assimilating bacterium Beijerinckia acida. The effects of N from peptone, of sapwood and of N from gaseous N2 on fungal, bacterial and fungal–bacterial activity were investigated. The activities were determined by quantification of biomass, formation of CO2, consumption of O2 and laccase activity. The significance of each effect was tested according to t-test recommendation. The activity of both fungi was enhanced by peptone rather than sapwood or gaseous N2. Nevertheless, comparative studies under an N2-free gas mixture as well as under air revealed that the presence of N2 affected bacterial growth and bacterial–fungal cocultivations. Elemental analysis isotope ratio mass spectrometry (IRMS) of the bacterial and fungal biomass enabled estimation of N transfer and underlined gaseous N2 as requisite for fungal–bacterial interactions. Combining full-factorial experimental plans with an analytical set-up comprising gas chromatography, IRMS and enzymatic activity allowed synergistic effects to be revealed, fungal N sources to be traced, and symbiotic fungal–bacterial interactions to be investigated. KW - Basidiomycetes KW - Diazotroph KW - Full-factorial experimental plan KW - Fungal–bacterial interaction KW - Nitrogen KW - Wood decomposition PY - 2012 DO - https://doi.org/10.1016/j.funbio.2011.10.002 SN - 1878-6146 SN - 1878-6162 VL - 116 IS - 1 SP - 81 EP - 89 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmalenberger, A. A1 - Pritzkow, Wolfgang A1 - Ojeda, J.J. A1 - Noll, Matthias T1 - Characterization of main sulfur source of wood-degrading basidiomycetes by S K-edge X-ray absorption near edge spectroscopy (XANES) JF - International biodeterioration & biodegradation N2 - The main wood degraders in aerobic terrestrial ecosystems belong to the white- and brown-rot fungi, where their biomass can be created on wood decay only. However, total sulfur (S) concentration in wood is very low and only little is known about the different sulfur compounds in wood today. Sulfur-starved brown-rot fungi Gloeophyllum trabeum and Oligoporus placenta were incubated on sterilized pine wood blocks whereas Lentinus cyathiformis and the white-rot fungi Trametes versicolor were incubated on sterilized beech wood blocks. After 19 weeks of incubation, the S oxidation status was analyzed in wood, in degraded wood, and in biomass of wood-degrading fungi by synchrotron based S K-edge XANES, and total S and sulfate were quantified. Total sulfur and sulfate content in pine wood blocks were approximately 50 and 1 µg g-1, respectively, while in beech wood approximately 100 and 20 µg g-1 were found, respectively. Sulfur in beech was dominated by sulfate-esters. In contrast, pine wood also contained larger amounts of reduced S. Three out of four selected fungi caused a reduction of the S oxidation state in wood from oxidized S (sulfate-ester, sulfate) to intermediate S (sulfonate, sulfoxide) or reduced S (thiols, e.g., proteins, peptides, enzyme cofactors). Only O. placenta shifted thiol to sulfonate. Growth experiments of these fungi on selective minimal media showed that in particular cysteine (thiol), sulfonates, and sulfate enhanced total mycelium growth. Consequently, wood-degrading fungi were able to utilize a large variety of different wood S sources for growth but preferentially transformed in vivo sulfate-esters and thiol into biomass structures. KW - Basidiomycetes KW - Fungi KW - S K-edge X-ray absorption near edge spectroscopy (XANES) KW - Sulfur oxidation status KW - Sulfate-esters PY - 2011 DO - https://doi.org/10.1016/j.ibiod.2011.08.013 SN - 0964-8305 VL - 65 IS - 8 SP - 1215 EP - 1223 PB - Elsevier CY - Barking AN - OPUS4-27546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weißhaupt, Petra A1 - Naumann, Annette A1 - Pritzkow, Wolfgang A1 - Noll, Matthias T1 - Nitrogen uptake of hypholoma fasciculare and coexisting bacteria JF - Mycological progress N2 - The white-rot fungus Hypholoma fasciculare coexists with a bacterial community that uses low-molecular weight carbon sources provided by fungal, extracellular enzyme activities. Since fungal development on wood is limited by the availability of nitrogen (N), bacteria could contribute to the N supply. To prove or disapprove an interaction in terms of N transfer, N sources of the fungus and the coexisting bacterial isolates were investigated, and the bacterial N2 fixation was quantified. Fungal, fungal—bacterial and bacterial wood decomposition was analysed by Fourier transform infrared spectroscopy (FTIR), mass loss and surface pH. Microbial N preferences were investigated by elemental analysis isotope ratio mass spectrometry (IRMS). In addition, diazotrophic activity was explored after cultivation under a 15N2/O2 atmosphere. Decomposition was similar with and without bacteria and both H. fasciculare and coexisting bacteria preferred reduced N species, such as urea, ammonium and organic N. In most of the bacteria, the 15N abundance in the biomass increased significantly but to a low extent if they were cultivated under a 15N2/O2 atmosphere. This effect is considered an artefact and attributed to adsorption rather than to bacterial N2 fixation activity. Hence, the bacteria coexisting with H. fasciculare rather competed for the same N sources than supported fungal N supply by diazotrophic activity. KW - Hypholoma fasciculare KW - Proteobacteria KW - Fungal-bacterial interaction KW - 15N2 fixation KW - FTIR-ATR spectroscopy KW - IRMS PY - 2013 DO - https://doi.org/10.1007/s11557-012-0834-x SN - 1617-416X SN - 1861-8952 VL - 12 IS - 2 SP - 283 EP - 290 PB - Springer CY - Heidelberg AN - OPUS4-28867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weißhaupt, Petra A1 - Pritzkow, Wolfgang A1 - Noll, Matthias T1 - Nitrogen metabolism of wood decomposing basidiomycetes and their interaction with diazotrophs as revealed by IRMS JF - International Journal of Mass Spectrometry N2 - Isotope ratio mass spectrometry (IRMS) is an advanced method to investigate carbon (C) and nitrogen (N) in organic samples. In particular, the N content, its isotope signature and the C/N ratio reveal important facts of nutrient cycling, niche separation and ecological food webs. In this study, the characteristics of N turnover of wood decomposing microorganisms were investigated. The growth of the white rot causing basidiomycete Trametes versicolor is enhanced after addition of ammonia or urea, whereas the brown rot causing Oligoporus placenta is not accelerated. In addition, an interaction of each fungus with atmospheric N2 assimilating (diazotrophic) bacteria was investigated. Cultivation experiments with a gas mixture of 15N2/O2 and subsequent IRMS analysis of dry biomass of the diazotrophs Azotobacter croococcum, Beijerinckia acida and Novosphingobium nitrogenifigens revealed that they assimilated up to 12% of their N from N2. The experiments reflected N availability as a prerequisite for efficient growth of decomposing basidiomycetes and diazotrophs. Fungal–bacterial co-cultivation experiments showed that depending on the growth characteristics and bacterial N2 assimilation activity N is transferred from certain bacteria into fungal biomass. Thus, the experiments gave a first indication of an interaction between wood decomposing basidiomycetes and diazotrophs, which is a novel pathway of fungal N acquisition. KW - IRMS KW - Isotope labeling KW - Microbial interaction KW - N2 assimilation KW - Nitrogen KW - Wood decomposing basidiomycetes PY - 2011 DO - https://doi.org/10.1016/j.ijms.2010.12.011 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 307 IS - 1-3 SP - 225 EP - 231 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel T1 - Development of reference procedures for the quantification of toxic metals and S in plastics JF - Journal of analytical atomic spectrometry N2 - The quantitative analysis of toxic metals in plastics is very important for different sectors of industry and daily life. Many routine procedures have been established based on X-ray fluorescence or inductively coupled plasma atomic emission spectrometry. However, all of them require suitable reference materials to calibrate or validate. These reference materials ideally are being certified by reference procedures. The development of such reference procedures for sulfur and the four toxic elements cadmium, chromium, mercury and lead in plastics is described here. The procedures are based on double isotope dilution mass spectrometry including analyte–matrix separation. The applied mass spectrometric techniques are thermal ionization mass spectrometry as well as inductively coupled plasma mass spectrometry. Memory effects of mercury and dissolution of chromium(III) oxide have been considered especially. The expanded uncertainties have been improved from the percent range down to the per mill range during the development of the procedure from the early analysis of BCR-680/681 to the recent analysis of CCQM-P106. With the fully developed procedures expanded uncertainties (k = 2) between 0.1 and 0.4% for cadmium, chromium, lead and sulfur and around 1% for mercury can be achieved. The so developed procedures have been successfully applied to the certification of reference materials as well as to intercomparisons organized by CCQM. KW - ICPMS KW - TIMS KW - Reference materials KW - IDMS PY - 2010 DO - https://doi.org/10.1039/c0ja00034e SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1633 EP - 1642 PB - Royal Society of Chemistry CY - London AN - OPUS4-22044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang A1 - Klingbeil, Patrick T1 - The need for new SI-traceable magnesium isotopic reference materials JF - Analytical and bioanalytical chemistry KW - Isotopic Reference Material KW - Multi-collector ICP-MS KW - Isotopic abundance variations KW - Primary Isotopic Reference Material KW - Magnesium PY - 2004 DO - https://doi.org/10.1007/s00216-004-2859-8 SN - 1618-2642 SN - 1618-2650 VL - 380 SP - 876 EP - 879 PB - Springer CY - Berlin AN - OPUS4-6904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Paz, B. A1 - Koenig, Maren A1 - Pritzkow, Wolfgang T1 - A modified lead-matrix separation procedure shown for lead isotope analysis in Trojan silver artefacts as an example JF - Analytical and bioanalytical chemistry N2 - A modified Pb–matrix separation procedure using NH4HCO3 solution as eluent has been developed and validated for determination of Pb isotope amount ratios by thermal ionization mass spectrometry. The procedure is based on chromatographic separation using the Pb·Spec resin and an in-house-prepared NH4HCO3 solution serving as eluent. The advantages of this eluent are low Pb blanks (<40 pgmL-1) and the property that NH4HCO3 can be easily removed by use of a heating step (>60 °C). Pb recovery is >95 % for water samples. For archaeological silver samples, however, the Pb recovery is reduced to approximately 50 %, but causes no bias in the determination of Pb isotope amount ratios. The validated procedure was used to determine lead isotope amount ratios in Trojan silver artefacts with expanded uncertainties (k=2) <0.09 %. KW - Analyte-matrix separation KW - Mass spectrometry KW - Pb isotope ratio thermal ionization mass spectrometry KW - Archaeometry PY - 2013 DO - https://doi.org/10.1007/s00216-012-6323-x SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 9 SP - 2995 EP - 3000 PB - Springer CY - Berlin AN - OPUS4-28170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope reference materials for present and future isotope research JF - Journal of analytical atomic spectrometry N2 - Isotope reference materials are essential to enable reliable and comparable isotope data. This article reviews the work in this field within the past years. The focus is on all stable elements, except for classical stable isotopes (H, C, N, O, S) and for radioactive elements. Currently available isotope reference materials are listed. The limitations of synthetic isotope mixtures being used to characterize these materials are discussed, as well as the limitations of the isotope reference materials, such as uncertainty and homogeneity. The needs for present research on isotope variations are being considered and are compared to the limitations of current isotope reference materials. This disagreement between both can only be solved by providing isotope reference materials defining a δ-scale for each element of interest. Such materials should be provided with additional data on isotope abundances whenever possible. As an outlook a possible outline for a new program on isotope reference materials is discussed. KW - IRM KW - Isotope reference materials KW - Delta-RM KW - ICPMS KW - TIMS KW - Synthetic mixtures PY - 2010 DO - https://doi.org/10.1039/c000509f SN - 0267-9477 SN - 1364-5544 VL - 25 SP - 923 EP - 932 PB - Royal Society of Chemistry CY - London AN - OPUS4-21841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wunderli, S. A1 - Fortunato, G. A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Meterology of determination for a new cadmium atomic weight and metrological application to cadmium in rice using MC-ICP-MS JF - Journal of Chinese mass spectrometry society / Zhipu-xuebao / Zhipu Xuehui KW - Atomic weight KW - Isotope KW - MC-ICP-MS KW - Cadmium KW - Determination of metrology of new cadmium atomic weight KW - Mass spectrometry KW - Review KW - Multicollector inductively coupled plasma mass spectrometry PY - 2003 SN - 1004-2997 VL - 24 IS - 4 SP - 467 EP - 470 CY - Beijing AN - OPUS4-31076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -