TY - JOUR A1 - Knobbe, N. A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang A1 - Panne, Ulrich A1 - Fry, H. A1 - Lochotzke, H.M. A1 - Preiss-Weigert, A. T1 - C and N stable isotope variation in urine and milk of cattle depending on the diet N2 - The stable carbon and nitrogen isotopic composition of urine and milk samples from cattle under different feeding regimes were analysed over a period of six months. The isotope ratios were measured with isotope ratio mass spectrometry (IRMS). The δ13C values of milk and urine were dependent on different feeding regimes based on C3 or C4 plants. The δ13C values are more negative under grass feeding than under maize feeding. The δ13C values of milk are more negative compared to urine and independent of the feeding regime. Under grass feeding the analysed milk and urine samples are enriched in 13C relative to the feed, whereas under maize feeding the 13C/12C ratio of urine is in the same range and milk is depleted in 13C relative to the diet. The difference between the 15N/14N ratios for the two feeding regimes is less pronounced than the 13C/12C ratios. The δ15N values in urine require more time to reach the new equilibrium, whereas the milk samples show no significant differences between the two feeding regimes. KW - Cattle KW - Urine KW - Milk KW - Feeding regime KW - Stable isotope PY - 2006 U6 - https://doi.org/10.1007/s00216-006-0644-6 SN - 1618-2642 SN - 1618-2650 VL - 386 IS - 1 SP - 104 EP - 108 PB - Springer CY - Berlin AN - OPUS4-12746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linsinger, T. A1 - Andrzejuk, W. A1 - Bau, A. A1 - Charoud-Got, J. A1 - De VOs, P. A1 - Emteborg, H. A1 - Hearn, R. A1 - Lamberty, A. A1 - Oostra, A. A1 - Pritzkow, Wolfgang A1 - Quétel, C. A1 - Roebben, G. A1 - Tresl, I. A1 - Vogl, Jochen A1 - Wood, S. T1 - Production of three certified reference materials for the sulfur content in gasoline (petrol) N2 - Directive 2003/17/EC of the European Parliament and the European Council stipulates that petrol (gasoline) with a total sulfur content below 10 mg kg-1 must be available in all European Union member states by 2009. Three certified reference materials were produced in support of this directive in a joint effort of the members of the European Reference Materials Initiative (ERM). Two of the materials were made from commercial petrol, while the third one was prepared from a blend of commercial petrols. Relative between-ampule heterogeneity of the materials was quantified and found to be below 2.5%. Potential degradation during storage and dispatch was quantified, and shelf lives based on these values were set. The three materials were characterized by three institutes using different variants of isotope-dilution mass spectrometry. The results from the three institutes were combined, and the final uncertainties of the respective sulfur mass fractions were estimated including contributions from heterogeneity, stability, and characterization. The following mass fractions were derived: ERM-EF211, 48.8 ± 1.7 mg kg-1; ERM-EF212, 20.2 ± 1.1 mg kg-1; and ERM-EF213, 9.1 ± 0.8 mg kg-1. KW - CRM KW - IDMS KW - ERM PY - 2007 U6 - https://doi.org/10.1021/ef070155t SN - 0887-0624 SN - 1520-5029 VL - 21 IS - 4 SP - 2240 EP - 2244 PB - ACS Publ. CY - Washington, DC AN - OPUS4-16371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pritzkow, Wolfgang A1 - Wunderli, S. A1 - Vogl, Jochen A1 - Fortunato, G. T1 - The isotope abundances and the atomic weight of cadmium by a metrological approach N2 - Gravimetric synthetic mixtures of seven enriched, purified cadmium isotope materials were used to determine the correction factors for mass fractionation (MC-TIMS) and mass discrimination (MC-ICP-MS). The isotope abundance ratios determined for various natural cadmium materials represents the isotope composition for natural cadmium materials. Correction of the isotope abundance ratios observed yielded isotope abundances of 106Cd 0.012450(8), 108Cd 0.008884(4), 110Cd 0.124846(16), 111Cd 0.127955(14), 112Cd 0.241110(38), 113Cd 0.122254(22), 114Cd 0.287439(60) and 116Cd 0.075183(32). The newly determined atomic weight of natural cadmium based on SI-traceable evaluation of the isotope abundance ratios is 112.41384(18). The cadmium material designated in the paper as Cd-2211 can be used as an isotope reference material with a δ(114Cd/110Cd)-value of 0‰. The results obtained show that the uncertainties for the isotope abundances and the atomic weight given as IUPAC values for cadmium are overestimated. KW - Atomic weight KW - Isotope abundance KW - Isotopic composition KW - Cadmium PY - 2007 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 261 IS - 1 SP - 74 EP - 85 PB - Elsevier CY - Amsterdam AN - OPUS4-14543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakobs, Désirée A1 - Mathies, Helena A1 - Abraham, W.-R. A1 - Pritzkow, Wolfgang A1 - Stephan, Ina A1 - Noll, Matthias T1 - Biodegradation of a biocide (Cu-N-cyclohexyldiazenium dioxide) component of a wood preservative by a defined soil bacterial community N2 - The wood protection industry has refined their products from chrome-, copper-, and arsenate-based wood preservatives toward solely copper-based preservatives in combination with organic biocides. One of these is Cu-HDO, containing the chelation product of copper and N-cyclohexyldiazenium dioxide (HDO). In this study, the fate of isotope-labeled (13C) and nonlabeled (12C) Cu-HDO incorporated in wood sawdust mixed with soil was investigated. HDO concentration was monitored by high-pressure liquid chromatography. The total carbon and the δ13C content of respired CO2, as well as of the soil-wood-sawdust mixture, were determined with an elemental analyzer-isotopic ratio mass spectrometer. The concentration of HDO decreased significantly after 105 days of incubation, and after 24 days the 13CO2 concentration respired from soil increased steadily to a maximum after 64 days of incubation. Phospholipid fatty acid-stable isotope probing (PFA-SIP) analysis revealed that the dominant PFAs C19:0d8,9, C18:0, C18:1ω7, C18:2ω6,9, C17:1d7,8, C16:0, and C16:1ω7 were highly enriched in their δ13C content. Moreover, RNA-SIP identified members of the phylum Acidobacteria and the genera Phenylobacterium and Comamonas that were assimilating carbon from HDO exclusively. Cu-HDO as part of a wood preservative effectively decreased fungal wood decay and overall microbial respiration from soil. In turn, a defined bacterial community was stimulated that was able to metabolize HDO completely. KW - 16S rRNA KW - Biocide KW - PLFA KW - Stable isotope probing KW - Soil KW - Wood preservative PY - 2010 U6 - https://doi.org/10.1128/AEM.01092-10 SN - 0099-2240 VL - 76 IS - 24 SP - 8076 EP - 8083 PB - American Society for Microbiology CY - Washington, DC [u.a.] AN - OPUS4-22688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel T1 - Development of reference procedures for the quantification of toxic metals and S in plastics N2 - The quantitative analysis of toxic metals in plastics is very important for different sectors of industry and daily life. Many routine procedures have been established based on X-ray fluorescence or inductively coupled plasma atomic emission spectrometry. However, all of them require suitable reference materials to calibrate or validate. These reference materials ideally are being certified by reference procedures. The development of such reference procedures for sulfur and the four toxic elements cadmium, chromium, mercury and lead in plastics is described here. The procedures are based on double isotope dilution mass spectrometry including analyte–matrix separation. The applied mass spectrometric techniques are thermal ionization mass spectrometry as well as inductively coupled plasma mass spectrometry. Memory effects of mercury and dissolution of chromium(III) oxide have been considered especially. The expanded uncertainties have been improved from the percent range down to the per mill range during the development of the procedure from the early analysis of BCR-680/681 to the recent analysis of CCQM-P106. With the fully developed procedures expanded uncertainties (k = 2) between 0.1 and 0.4% for cadmium, chromium, lead and sulfur and around 1% for mercury can be achieved. The so developed procedures have been successfully applied to the certification of reference materials as well as to intercomparisons organized by CCQM. KW - ICPMS KW - TIMS KW - Reference materials KW - IDMS PY - 2010 U6 - https://doi.org/10.1039/c0ja00034e SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1633 EP - 1642 PB - Royal Society of Chemistry CY - London AN - OPUS4-22044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope reference materials for present and future isotope research N2 - Isotope reference materials are essential to enable reliable and comparable isotope data. This article reviews the work in this field within the past years. The focus is on all stable elements, except for classical stable isotopes (H, C, N, O, S) and for radioactive elements. Currently available isotope reference materials are listed. The limitations of synthetic isotope mixtures being used to characterize these materials are discussed, as well as the limitations of the isotope reference materials, such as uncertainty and homogeneity. The needs for present research on isotope variations are being considered and are compared to the limitations of current isotope reference materials. This disagreement between both can only be solved by providing isotope reference materials defining a δ-scale for each element of interest. Such materials should be provided with additional data on isotope abundances whenever possible. As an outlook a possible outline for a new program on isotope reference materials is discussed. KW - IRM KW - Isotope reference materials KW - Delta-RM KW - ICPMS KW - TIMS KW - Synthetic mixtures PY - 2010 U6 - https://doi.org/10.1039/c000509f SN - 0267-9477 SN - 1364-5544 VL - 25 SP - 923 EP - 932 PB - Royal Society of Chemistry CY - London AN - OPUS4-21841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope dilution mass spectrometry - a primary method of measurement and its role for RM certification KW - IDMS KW - Reference materials KW - Metrology KW - ICPMS KW - TIMS PY - 2010 SN - 0970-3950 VL - 25 IS - 3 SP - 135 EP - 164 PB - Metrology Society of India CY - New Delhi AN - OPUS4-22603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmalenberger, A. A1 - Pritzkow, Wolfgang A1 - Ojeda, J.J. A1 - Noll, Matthias T1 - Characterization of main sulfur source of wood-degrading basidiomycetes by S K-edge X-ray absorption near edge spectroscopy (XANES) N2 - The main wood degraders in aerobic terrestrial ecosystems belong to the white- and brown-rot fungi, where their biomass can be created on wood decay only. However, total sulfur (S) concentration in wood is very low and only little is known about the different sulfur compounds in wood today. Sulfur-starved brown-rot fungi Gloeophyllum trabeum and Oligoporus placenta were incubated on sterilized pine wood blocks whereas Lentinus cyathiformis and the white-rot fungi Trametes versicolor were incubated on sterilized beech wood blocks. After 19 weeks of incubation, the S oxidation status was analyzed in wood, in degraded wood, and in biomass of wood-degrading fungi by synchrotron based S K-edge XANES, and total S and sulfate were quantified. Total sulfur and sulfate content in pine wood blocks were approximately 50 and 1 µg g-1, respectively, while in beech wood approximately 100 and 20 µg g-1 were found, respectively. Sulfur in beech was dominated by sulfate-esters. In contrast, pine wood also contained larger amounts of reduced S. Three out of four selected fungi caused a reduction of the S oxidation state in wood from oxidized S (sulfate-ester, sulfate) to intermediate S (sulfonate, sulfoxide) or reduced S (thiols, e.g., proteins, peptides, enzyme cofactors). Only O. placenta shifted thiol to sulfonate. Growth experiments of these fungi on selective minimal media showed that in particular cysteine (thiol), sulfonates, and sulfate enhanced total mycelium growth. Consequently, wood-degrading fungi were able to utilize a large variety of different wood S sources for growth but preferentially transformed in vivo sulfate-esters and thiol into biomass structures. KW - Basidiomycetes KW - Fungi KW - S K-edge X-ray absorption near edge spectroscopy (XANES) KW - Sulfur oxidation status KW - Sulfate-esters PY - 2011 U6 - https://doi.org/10.1016/j.ibiod.2011.08.013 SN - 0964-8305 VL - 65 IS - 8 SP - 1215 EP - 1223 PB - Elsevier CY - Barking AN - OPUS4-27546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weißhaupt, Petra A1 - Pritzkow, Wolfgang A1 - Noll, Matthias T1 - Nitrogen metabolism of wood decomposing basidiomycetes and their interaction with diazotrophs as revealed by IRMS N2 - Isotope ratio mass spectrometry (IRMS) is an advanced method to investigate carbon (C) and nitrogen (N) in organic samples. In particular, the N content, its isotope signature and the C/N ratio reveal important facts of nutrient cycling, niche separation and ecological food webs. In this study, the characteristics of N turnover of wood decomposing microorganisms were investigated. The growth of the white rot causing basidiomycete Trametes versicolor is enhanced after addition of ammonia or urea, whereas the brown rot causing Oligoporus placenta is not accelerated. In addition, an interaction of each fungus with atmospheric N2 assimilating (diazotrophic) bacteria was investigated. Cultivation experiments with a gas mixture of 15N2/O2 and subsequent IRMS analysis of dry biomass of the diazotrophs Azotobacter croococcum, Beijerinckia acida and Novosphingobium nitrogenifigens revealed that they assimilated up to 12% of their N from N2. The experiments reflected N availability as a prerequisite for efficient growth of decomposing basidiomycetes and diazotrophs. Fungal–bacterial co-cultivation experiments showed that depending on the growth characteristics and bacterial N2 assimilation activity N is transferred from certain bacteria into fungal biomass. Thus, the experiments gave a first indication of an interaction between wood decomposing basidiomycetes and diazotrophs, which is a novel pathway of fungal N acquisition. KW - IRMS KW - Isotope labeling KW - Microbial interaction KW - N2 assimilation KW - Nitrogen KW - Wood decomposing basidiomycetes PY - 2011 U6 - https://doi.org/10.1016/j.ijms.2010.12.011 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 307 IS - 1-3 SP - 225 EP - 231 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope reference materials for present and future isotope research N2 - The variation of isotope abundance ratios is increasingly used to unravell natural and technical questions. In the past the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance and authenticity of food, the number of published isotope data strongly increased. The development of inductively coupled plasma mass spectrometers (ICPMS) from an instrument for simple quantitative analysis to highly sophisticated isotope abundance ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reproducible isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICPMS. Especially for such user isotope reference materials (IRM) are indispensible to enable a reliable method validation. The fast development and the broad availability of ICPMS also lead to an expansion of the classical research areas and new elements are under investigation. Here all users require IRM to correct for mass fractionation or mass discrimination or at least to enable isotope data related to a common accepted basis. Despite this growing interest suitable IRM are still lacking for a number of isotope systems such as magnesium. PY - 2011 SN - 1471-8022 VL - 75 IS - 3 SP - 2098 PB - Mineralogical Society of Great Britain and Ireland CY - London AN - OPUS4-32683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -