TY - CONF A1 - Bulling, Jannis A1 - Jurgelucks, B. A1 - Prager, Jens A1 - Walther, A. T1 - Schadensrekonstruktion mittels geführter Wellen in Stahlplatten N2 - Ein Hauptziel der zerstörungsfreien Prüfung und der Strukturüberwachung (engl. Structural Health Monitoring - SHM) mit Ultraschallwellen ist die Charakterisierung von Schäden in Bauteilen. In vielen schalenförmigen Bauteilen, wie zum Beispiel Rohrleitungen, Laminaten und Platten, breitet sich der Ultraschall in Form geführter Wellen aus. Zwar erlauben geführte Wellen eine großflächige Prüfung durch das langsame Abklingen der Wellen. Jedoch breiten sich die Wellen in verschiedenen dispersiven Moden aus, was die Analyse der vom Schaden erzeugten Reflexionen erschwert. Eine Möglichkeit, die Messsignale zu interpretieren, um Schäden zu charakterisieren, ist der direkte Vergleich mit einem Simulationsmodell. Die Rekonstruktion des Schadens stellt ein inverses Problem dar. Das inverse Problem kann als Optimierungsproblem formuliert werden. Für die Optimierung werden mehrere Vorwärtsrechnungen gebraucht, um das Schadensmodell an die Messdaten anzupassen. Aufgrund der kurzen Wellenlängen von Ultraschallwellen sind klassische Methoden für die Vorwärtsrechnung, wie z.B. die Finite Elemente Methode (FEM), rechenintensiv. Eine Möglichkeit den Rechenaufwand zu reduzieren, bietet die Approximation der Wellenausbreitung mittels der semi-analytischen Scaled Boundary Finite Element Method (SBFEM). Frühere Untersuchungen haben gezeigt, dass die benötigten Freiheitsgrade im Vergleich zur FEM wesentlich geringer sind [1]. Im Beitrag wird eine Optimierung basierend auf einem Gradientenverfahren in Kombination mit der SBFEM vorgestellt und an verschiedenen Schadenstypen in 2D-Querschnittsmodellen von Stahlplatten getestet. Der Gradient des Vorwärtsmodells wird durch Algorithmisches Differenzieren berechnet, wodurch eine genaue und schnelle Optimierung ermöglicht wird. Es werden Untersuchungen zum inversen Problem und das Finden einer geeigneten Zielfunktion präsentiert. Es wird verdeutlicht, dass der entwickelte Algorithmus robust gegenüber von Rauscheinflüssen ist. In diesen Untersuchungen werden zunächst „Messdaten“ aus unabhängigen Simulationen verwendet [2]. Erste Schritte für die experimentelle Validierung und Erweiterung auf 3D Modelle werden anschließend vorgestellt. T2 - Doktorandenworkshop in Kloster Lehnin CY - Kloster Lehnin, Germany DA - 19.10.22 KW - SBFEM KW - Zerstörungsfreie Prüfung KW - Structural Health Monitoring KW - Ultraschallwellen PY - 2022 AN - OPUS4-56551 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prager, Jens A1 - Vogt, T. T1 - Zum Einsatz geführter Wellen für die Ultraschallprüfung – Ergebnisse der Onlineumfrage JF - ZfP-Zeitung N2 - Der Unterausschuss „Geführte Wellen“ im Fachausschuss „Zustandsüberwachung“ der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) hat in einer Online-Umfrage den aktuellen Stand des Einsatzes geführter Ultraschallwellen für die zerstörungsfreie Prüfung und die Strukturüberwachung (structural health monitoring) ermittelt. Es wurden deutsche und internationale Firmen und Forschungseinrichtungen befragt und mehr als 400 beantwortete Fragebögen ausgewertet. Die Umfrageergebnisse zeigen deutlich, welche Vorteile geführte Wellen bringen, aber auch welche Probleme zu bewältigen sind, um einen breiteren Einsatz der Verfahren zu ermöglichen. Aus den Ergebnissen werden Schlussfolgerungen für die weitere Ausrichtung der Forschungs- und Entwicklungsarbeiten aber auch von Aktivitäten zur Normung und zur Bewertung der Zuverlässigkeit der Prüfverfahren abgeleitet KW - Structural Health Monitoring KW - Geführte Wellen KW - Zustandsüberwachung PY - 2019 UR - https://www.dgzfp.de/Portals/24/Zeitung/Ausgaben/Zeitung166.pdf SN - 1616-069X VL - 166 IS - Oktober SP - 8 EP - 9 PB - DGZfP e.V. CY - Berlin AN - OPUS4-49508 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heimann, Jan A1 - Mustapha, S. A1 - Yilmaz, Bengisu A1 - Charmi, Amir A1 - Brence, Blaž A1 - Prager, Jens T1 - Untersuchung der Ausbreitung von geführten Ultraschallwellen in Wasserstoffdruckbehältern zur Zustandsüberwachung T2 - Fortschritte der Akustik - DAGA 2023 N2 - Die zunehmende Bedeutung von Wasserstoff als emissionsfreier Energieträger der Zukunft lässt die Anforderungen an eine technisch einwandfreie und sichere Wasserstoffspeicherung steigen. Im Mobilitätssektor kommen dabei vorwiegend Kohlefaserverbundbehälter zur Speicherung von gasförmigem Wasserstoff im Hochdruckbereich zum Einsatz, die sich durch ihre Leichtbauweise bei gleichzeitig hoher Speicherkapazität auszeichnen. Materialfehler oder -ermüdung können jedoch zum Ausfall bis hin zum kritischen Versagensfall führen. Ein sicherer Betrieb der Behälter erfordert daher ein innovatives und zuverlässiges Konzept, um deren Integrität zu gewährleisten und folgenschwere Zwischenfälle zu vermeiden. Die Strukturüberwachung mittels geführter Ultraschallwellen ist dafür einer der prominentesten Ansätze, da sich die Wellen über große Entfernungen in der Struktur ausbreiten können und zudem sehr empfindlich auf kleinste Materialdefekte reagieren. In diesem Beitrag wird der Aufbau eines Sensornetzwerks zur Schadenserkennung und -lokalisierung vorgestellt, das auf den Prinzipien der Ausbreitung geführter Ultraschallwellen in Druckbehältern aus Verbundwerkstoffen basiert. Dazu werden in einem ersten Schritt das dispersive und multimodale Ausbreitungsverhalten analysiert und dominante Wellenmoden identifiziert. Basierend auf der Analyse werden Dämpfungsverhalten und Empfindlichkeit gegenüber künstlichen Defekten bestimmt. Unter Verwendung der ermittelten Informationen wird ein Sensornetzwerk bestehend aus piezoelektrischen Flächenwandlern entworfen, welches den zu untersuchenden Bereich vollständig abdecken soll. Das Ergebnis wird anschließend durch Aufbringen künstlicher Defekte experimentell evaluiert und präsentiert. T2 - DAGA 2023 CY - Hamburg, Germany DA - 06.03.2023 KW - Geführte Ultraschallwellen KW - Zustandsüberwachung KW - Wasserstoffdruckbehälter KW - Sensornetzwerk KW - Structural Health Monitoring PY - 2023 UR - https://pub.dega-akustik.de/DAGA_2023 SN - 978-3-939296-21-8 SP - 1598 EP - 1601 CY - Berlin AN - OPUS4-58022 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -