TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margit A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - AGIFAMOR: Anwendung der verteilten akustischen und faseroptischen Sensorik zur kontinuierlichen Überwachung von Rohrleitungen - Teil 2: Technische Hintergründe - Schadensursachen und Prüfeinrichtungen N2 - Schäden an Rohrleitungen können zu hohen Umweltbelastungen und wirtschaftlichen Schäden führen. Um die dauerhafte Verfügbarkeit der Infrastruktur zu gewährleisten, wird im Rahmen des Projekts AGIFAMOR an der Bundesanstalt für Materialforschung und -prüfung (BAM) erprobt, inwiefern das Verfahren der verteilten akustischen faseroptischen Sensorik (Distributed acoustic sensing – DAS) zur kontinuierlichen Überwachung von Rohrleitungen eingesetzt werden kann. Neben der DAS werden erprobte Verfahren der zerstörungsfreien Prüfung wie Schallemissionsanalyse (SEA) und Beschleunigungssensoren eingesetzt. An dieser Stelle soll detailliert auf die Hauptschadensursachen an Rohrleitungen, den Versuchsstand zur mechanischen Belastung von Rohren sowie die Möglichkeiten zu Untersuchungen im Realmaßstab eingegangen werden. KW - Schadensursachen an Rohrleitungen KW - Monitoring von Rohrleitungen KW - Verteilte Faseroptische Sensorik KW - Rohrbiegeprüfstand KW - Leckage PY - 2018 SN - 2191-0073 VL - 8 IS - 3 SP - 24 EP - 29 PB - Springer VDI-Verlag GmbH & Co. KG CY - Düsseldorf AN - OPUS4-44507 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margrit A1 - Wosidlo, Peter A1 - Habib, Abdel Karim T1 - AGIFAMOR: Anwendung der akustischer und faseroptischer Sensorik zur Überwachung von Rohrleitungen; Teil 3: Technische Hintergründe - Messmethoden N2 - Schäden an Rohrleitungen können zu hohen Umweltbelastungen und wirtschaftlichen Schäden führen. Um die dauerhafte Verfügbarkeit der Infrastruktur zu gewährleisten, wird im Rahmen des Projekts AGIFAMOR an der Bundesanstalt für Materialforschung und -prüfung (BAM) erprobt, inwiefern das Verfahren der verteilten akustischen faseroptischen Sensorik (Distributed acoustic sensing - DAS) zur kontinuierlichen Überwachung von Rohrleitungen verwendet werden kann. Neben der DAS werden erprobte Verfahren der zerstörungsfreien Prüfung wie Schallemissionsanalyse (SEA) und Beschleunigungssensoren eingesetzt. An dieser Stelle soll detailliert auf die unterschiedlichen Messverfahren und deren spezifischen Einsatz im Rahmen des Projektes eingegangen werden. KW - Verteilten akustischen faseroptischen Sensorik KW - Überwachung von Rohrleitungen KW - Zerstörungsfreie Prüfung KW - Schallemissionsanalyse KW - Beschleunigungssensorik PY - 2018 SN - 2191-0073 VL - 8 IS - 5 SP - 29 EP - 35 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-45933 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Habib, Abdel Karim A1 - Homann, Tobias A1 - Hussels, Maria-Teresa A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margit A1 - Wossidlo, Peter T1 - Feasibility study - Continuous monitoring of pipes using distributed acoustic and fibre optic sensors N2 - The feasibility study „AGIFAMOR. Ageing infrastructures – distributed acoustic monitoring of pipes” is an interdisciplinary research project at BAM internally financed from 2015 to 2018. Therefore, the quite young fibre optic sensing technology of distributed acoustic sensing (DAS) was investigated to possibly be extended towards a global condition monitoring system for pipelines operating in real time. DAS is a highly dynamic fibre optic sensing technology based on the method of coherent optical time domain reflectometry (C-OTDR). DAS allows capturing strain changes in the range of kHz. For the experimental work, the most suitable application yielding an optimum sensitivity was proven by wrapping a standard single-mode silica fibre around the pipe. The DAS sensitivity was investigated regarding the detection of 1) incidents that initiate propagation of acoustic waves in the pipe wall, 2) changes inside the pipeline causing altered flow and 3) damage development in the pipe wall. Therefore, several testing setups in laboratory as well as in real scale were realized. For comparison purposes, experiments were accompanied by acoustic emission analyses and by measurements with accelerometers. DAS was found to be very sensitive to gas ignition and its propagation across the pipe. Furthermore, the ability of DAS to detect and localize acoustic signals associated with pipeline leakage was demonstrated. The detection of crack formation and propagation within the pipe wall by means of DAS was studied during bending tests on several pipe segments, but was not proven so far with certainty. As expected, these studies turned out as the most difficult challenge due to the random occurrence and transient nature of microscopic damage phenomena. T2 - Proceedings of the International Symposium on Structural Health Monitoring and Nondestructive Testing CY - Saarbrücken, Germany DA - 04.10.2018 KW - Accelerometers KW - Acoustic emission KW - Fibre optic acoustic sensing KW - Continous monitoring KW - Bending tests on pipe segments KW - Leak detection PY - 2018 SP - Paper 21 AN - OPUS4-46375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Mieller, Björn A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Prager, Jens A1 - Schukar, Marcus A1 - Strohhäcker, J. T1 - Sensoren und Analytik für Sicherheit und Prozesskontrolle in Wasserstofftechnologien N2 - Die Nutzung von Sensortechnologien, insbesondere im Bereich der Gasdetektion mit einem Schwerpunkt auf Wasserstoff, spielt eine entscheidende Rolle in verschiedenen Anwendungsbereichen der Wasserstofftechnologie. Sicherheitsüberwachung, Leckdetektion und Prozesskontrolle gehören zu den prominenten Anwendungsgebieten dieser Sensortechnologien. Ein zentrales Ziel ist die Erkennung von freigesetztem Wasserstoff sowie die genaue Bestimmung des Wasserstoff-Luftverhältnisses mithilfe von Gassensoren. Dies ist von entscheidender Bedeutung, um potenzielle Gefahren frühzeitig zu erkennen und angemessene Maßnahmen zu ergreifen. Ein weiterer Schwerpunkt dieses Beitrags liegt auf der Analytik und der Verwendung zertifizierter Referenzmaterialien in Verbindung mit Metrologie für die Wasserstoffspeicherung. Dies gewährleistet eine präzise und zuverlässige Charakterisierung von Wasserstoff und unterstützt die Entwicklung sicherer Speichertechnologien. Im Rahmen des Euramet-Vorhabens Metrology for Advanced Hydrogen Storage Solutions (MefHySto) wird eine Kurzvorstellung präsentiert. Der Vortrag stellt zwei zerstörungsfreie Prüfverfahren zum strukturellen Zustandsüberwachung (Structural Health Monitoring, SHM) für Wasserstofftechnologien vor. Insbesondere die Fehlstellenerkennung mittels geführter Ultraschallwellen spielt eine bedeutende Rolle bei der Lebensdauerüberwachung von Wasserstoffspeichern. Ein weiterer Aspekt ist die Anwendung faseroptischer Sensorik zur Schadensfrüherkennung von Wasserstoffspeichern. Diese zerstörungsfreien Prüfverfahren ermöglichen eine präzise und frühzeitige Identifizierung von Schäden, was die Sicherheit und Effizienz von Wasserstoffspeichersystemen entscheidend verbessert. T2 - DVGW Kongress H2 Sicherheit CY - Online meeting DA - 15.11.2023 KW - H2Safety@BAM KW - Gassensorik KW - Metrologie KW - zertifizierte Referenzmaterialien KW - Zerstörungsfreie Prüfung KW - Ultraschall KW - Faseroptik PY - 2023 AN - OPUS4-59230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -