TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Prager, Jens T1 - 3D ray tracing model for ultrasound field evaluation in inhomogeneous anisotropic materials: model and experimental validation N2 - In this contribution a 3D ray tracing model for ultrasonic field evaluation in inhomogeneous anisotropic materials such as austenitic welds is presented. The inhomogenity of austenitic weld material is represented as several homogeneous layers. The general problem of energy reflection and transmission at the boundaries of the layers are solved resulting 3D amplitude and energy reflection and transmission coefficients. The directivity factor for the ray in general arbitrary oriented austenitic weld material (including lay back orientation) is determined based on Lamb’s reciprocity theorem. The transducer excited ultrasonic fields are accurately evaluated by employing ray directivity factor, transmission coefficients, divergence of the ray bundle and density of rays. Finally, the comparison between theoretical and experimental results will be described. T2 - DAGA 2012 - 38. Jahrestagung für Akustik - Fortschritte der Akustik CY - Darmstadt, Deutschland DA - 2012-03-19 KW - Ultrasonic field KW - 3D ray tracing KW - Inhomogeneous KW - Austenitic weld PY - 2012 SP - 959 EP - 960 PB - Deutsche Gesellschaft für Akustik e.V. AN - OPUS4-26204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Chinta, P.K. A1 - Kreutzbruck, Marc A1 - Prager, Jens ED - Thompson, D. O. ED - Chimenti, D. E. T1 - Quantitative evaluation of ultrasonic sound fields in anisotropic austenitic welds using 2D ray tracing model N2 - Ultrasonic investigation of inhomogeneous anisotropic materials such as austenitic welds is complicated because its columnar grain structure leads to curved energy paths, beam splitting and asymmetrical beam profiles. A ray tracing model has potential advantage in analyzing the ultrasonic sound field propagation and there with optimizing the inspection parameters. In this contribution we present a 2D ray tracing model to predict energy ray paths, ray amplitudes and travel times for the three wave modes quasi longitudinal, quasi shear vertical, and shear horizontal waves in austenitic weld materials. Inhomogenity in the austenitic weld material is represented by discretizing the inhomogeneous region into several homogeneous layers. At each interface between the layers the reflection and transmission problem is computed and yields energy direction, amplitude and energy coefficients. The ray amplitudes are computed accurately by taking into account directivity, divergence and density of rays, phase relations as well as transmission coefficients. Ultrasonic sound fields obtained from the ray tracing model are compared quantitatively with the 2D Elastodynamic Finite Integration Technique (EFIT). The excellent agreement between both models confirms the validity of the presented ray tracing results. Experiments are conducted on austenitic weld samples with longitudinal beam transducer as transmitting probe and amplitudes at the rear surface are scanned by means of electrodynamical probes. Finally, the ray tracing model results are also validated through the experiments. T2 - 38th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Burlington, VT, USA DA - 2011-07-17 KW - Ultrasonic sound field KW - Ray tracing KW - Ray directivity KW - Austenitic weld PY - 2012 SN - 978-0-7354-1013-8 U6 - https://doi.org/10.1063/1.4716359 SN - 0743-0760 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1430 SP - 1227 EP - 1234 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Chinta, P.K. A1 - Boehm, Rainer A1 - Prager, Jens ED - Linde, B. B. J. ED - Paczkowski, J. ED - Ponikwicki, N. T1 - Simulation of ultrasonic fields in anisotropic materials using 2D ray tracing method N2 - Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials and dissimilar welds. A 2-D Ray tracing method is developed for evaluating ray path, amplitude and travel time for three wave modes namely quasi longitudinal wave (qP), quasi shear vertical wave (qSV) and shear horizontal waves (SH) in anisotropic materials such as austenitic cladded materials. The inhomogenity in the anisotropic material is represented by discretizing the anisotropic region into several homogeneous layers. The ray paths are traced during its propagation through the various interfaces between those layers. At each interface the problem of reflection and refraction is solved. The ray amplitudes are computed by taking into account the directivity and phase relations. Ray divergence variation and ray transmission coefficients at each refraction boundary are considered. The Ray tracing results for ultrasonic field profiles in austenitic cladded materials are validated quantitatively by 2-D Elastodynamic Finite Integration Technique (EFIT) results and by the experiments. T2 - International congress on ultrasonics CY - Gdansk, Poland DA - 2011-09-05 KW - Ray path KW - Energy vector KW - Austenitic cladded material KW - Ultrasonic beam profile PY - 2012 SN - 978-0-7354-1019-0 U6 - https://doi.org/10.1063/1.3703288 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1433 SP - 743 EP - 746 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahman, Mehbub-Ur A1 - Kolkoori, Sanjeevareddy A1 - Prager, Jens T1 - Elastische Wellenausbreitung in austenitischen Schweißnähten - numerische Simulationen und deren messtechnische Validierung N2 - In diesem Beitrag wird die numerische Modellierung und deren messtechnische Validierung der elastischen Wellenausbreitung in austenitischen Schweißnähten vorgestellt. Die Ultraschallprüfung von austenitischen Schweißverbindungen war und ist immer noch eine der schwierigsten Aufgaben der ZfP. Für eine optimierte Prüfkonfiguration ist es notwendig, verschiedene Prüfparameter wie Einschallwinkel, Prüfkopfposition und -Orientierung richtig einzustellen. Um die beste Anordnung zu ermitteln, wurde die Schallausbreitung in den austenitischen Schweißnähten mit verschiedenen Verfahren wie elastische finite Integrationstechnik (EFIT) und Raytracing simuliert. Mit Hilfe der Simulationsergebnisse wurde die verwendete Gruppenstrahlerprüftechnik optimiert. Es wurden zahlreiche Untersuchungen an anisotropen Testkörpern in V-Durchschallung und an bezüglich der Schweißnaht transversal orientierten Rissen durchgefühlt. Die Ergebnisse der auf Raytracing bzw. EFIT basierenden Simulationstools wurden untereinander und auch mit den Messergebnissen verglichen. T2 - DAGA 2011 - 37. Jahrestagung für Akustik - Fortschritte der Akustik CY - Düsseldorf, Deutschland DA - 21.03.2011 PY - 2011 SN - 978-3-939296-02-7 SP - 1 EP - 2 AN - OPUS4-25224 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Prager, Jens A1 - Kreutzbruck, Marc T1 - Acoustic wave energy skewing and coefficients for the reflected and transmitted plane waves in general homogeneous transversely-isotropic austenitic materials N2 - In this contribution a simulation tool is developed to compute the energy skewing angles and energy coefficients for the reflected and refracted plane waves in following general cases: (1) reflection and refraction of plane elastic waves at an interface between isotropic and transversely isotropic solid, (2) reflection and refraction of plane elastic waves at an interface between transversely isotropic and isotropic solid, (3) reflection and refraction of plane elastic waves at an interface between two general transversely isotropic solid and (4) reflection of plane elastic waves from a stress free boundary of a transversely isotropic solid. Computational results for analytically evaluated acoustic wave energy skewing angles and energy reflection and transmission coefficients in acoustically anisotropic materials such as austenitic steel materials exhibiting columnar grain orientation are presented. The obtained results show that the acoustic energy skewing angles and coefficients in austenitic steel materials strongly depend upon the columnar grain orientation and are less influenced by the grain orientations which are parallel and perpendicular to the interface. T2 - 8th International conference on NDE in relation to structural integrity for nuclear and pressurised components CY - Berlin, Germany DA - 2010-09-29 KW - Anisotropy KW - Austenitic weld material KW - Energy skewing KW - Critical angle KW - Energy flux vector KW - Energy coefficients PY - 2010 SN - 978-3-940283-30-6 IS - DGZfP-BB 125 (Th.1.C.3) SP - 1 EP - 10 CY - Berlin AN - OPUS4-25232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Chinta, P.K. A1 - Prager, Jens T1 - Computationally efficient ray tracing algorithm for simulation of transducer fields in anisotropic materials N2 - This contribution describes a computationally efficient ray tracing algorithm for evaluating transducer generated ultrasonic wave fields in anisotropic materials such as austenitic cladded and austenitic weld components. According to this algorithm, ray paths are traced during its propagation through various layers of the material and at each Interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer generated ultrasonic fields accurately by taking in to account the directivity, divergence, density of rays, phase relations as well as transmission coefficients. The ray tracing algorithm is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The simulation results are compared quantitatively with the results obtained from Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occuring in the ultrasonic non destructive testing of anisotropic materials. The excellent agreement between both models confirms the validity of the presented ray tracing algorithm. Finally, the ray tracing model results are also validated by means of experiments. T2 - NDE 2011 - National seminar & exhibition on non-destructive evaluation CY - Chennai, India DA - 08.12.2011 KW - Ultrasonic sound field KW - Ray tracing KW - Directivity KW - Anisotropy KW - Austenitic weld PY - 2011 SP - 482 EP - 486 AN - OPUS4-25329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Christian A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Boehm, Rainer A1 - Prager, Jens T1 - SAFT imaging of transverse cracks in austenitic and dissimilar welds N2 - Up to now there is no sufficient technique to detect transverse cracks in austenitic and dissimilar welds which recently are of increasing interest in the integrity surveillance of nuclear power plants as well as in quality control of longitudinally welded pipes. Weld inspection by interpretation of single A-scans will lead to erroneous results due to effects caused by anisotropy and in worst case might leave flaws undetected. Therefore, imaging techniques such as the synthetic aperture focusing technique (SAFT) should be used. If the SAFT algorithm is applied on data taken from austenitic welds, the inhomogeneous, anisotropic structure of these welds has to be taken into account in order to properly attribute amplitudes measured in A-scans to the corresponding coordinates in the region of interest. While this has been investigated in the past, all attempts so far were limited to the imaging of longitudinal cracks which requires a less complicated setup than the imaging of transverse cracks. In this paper we give an outline of our attempts to reconstruct images of transverse cracks in different welds. For this purpose a SAFT program based on ray tracing and a layered structure weld model derived from an empirical model of grain orientations in welds are used. The results of the image reconstruction on experimental data are shown and compared to images obtained by assuming an isotropic homogeneous model. Root reflection and crack tip echo are clearly visible which allows an estimation of size and position of the crack with good accuracy. KW - SAFT KW - Austenitic welds KW - Dissimilar welds KW - Transverse cracks KW - Ray tracing PY - 2013 U6 - https://doi.org/10.1007/s10921-012-0159-3 SN - 0195-9298 SN - 1573-4862 VL - 32 IS - 1 SP - 51 EP - 66 PB - Plenum Press CY - New York, NY AN - OPUS4-27754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Shokouhi, Parisa A1 - Höhne, Christian A1 - Rahman, Mehbub-Ur A1 - Kreutzbruck, Marc A1 - Prager, Jens T1 - A comparative study of ray tracing and CIVA simulation for ultrasonic examination of anisotropic inhomogeneous austenitic welds N2 - Ultrasonic examination of anisotropic inhomogeneous austenitic welds is challenging, because of the columnar grain structure of the weld leads to beam skewing and splitting. Modeling tools play an important role in understanding the ultrasound field propagation and optimization of experimental parameters during the ultrasonic testing of austenitic welds as well as the interpretation of the test results. In this contribution, an efficient theoretical model based on the ray tracing concepts is developed to calculate the ultrasonic fields in inhomogeneous austenitic welds quantitatively. The developed model determines the ultrasound fields by taking into account the directivity of the ray source, the inhomogenity of the weld as well as ray transmission coefficients. Directivity of the ray source in columnar grained austenitic materials (including layback orientation) is obtained in three dimensions based on Lamb's reciprocity theorem. Ray energy reflection and transmission coefficients at an interface between two general columnar grained austenitic materials are calculated in three dimensions. The ray tracing model predictions on inhomogeneous austenitic weld material are compared against those from CIVA, a commercial non-destructive modeling and simulation tool. The ultrasonic modeling tools in CIVA are based on semi-analytical solutions. For beam propagation simulation, a so-called 'pencil method' is used, which involves modeling the probe as a set of individual source points, each radiating 'a bundle' of diverging rays into the medium and integrating those elementary contributions. Inhomogenity in the weld region is approximated by mapping the grain orientations on weld macrograph. Simulation results for ultrasonic field profiles for an austenitic weld are shown to be in good agreement with the corresponding experimental results. T2 - 39th Annual review of progress in quantitative nondestructive evaluation CY - Denver, Colorado, USA DA - 15.07.2012 KW - Crystal microstructure KW - Ray tracing KW - Ultrasonic materials testing KW - Ultrasonic propagation KW - Ultrasonic reflection KW - Ultrasonic transmission KW - Welds PY - 2013 SN - 978-0-7354-1129-6 U6 - https://doi.org/10.1063/1.4789158 SN - 0094-243X SN - 1551-7616 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1511 SP - 1043 EP - 1050 PB - AIP Publishing AN - OPUS4-27736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Prager, Jens T1 - Effect of columnar grain orientation on ultrasonic plane wave energy reflection and transmission behaviour in anisotropic austenitic weld materials N2 - This article describes a comprehensive quantitative analysis on effect of columnar grain orientation on ultrasonic plane wave energy reflection and transmission behaviour in acoustically anisotropic austenitic weld materials. The quantitative results are presented for following general interfaces (a) Isotropic-Anisotropic, (b) Anisotropic-Isotropic, (c) Fluid-Anisotropic, (d) Anisotropic-Fluid, (e) Anisotropic-Anisotropic, (f) Anisotropic-Free surface occur during the ultrasonic non destructive evaluation of austenitic weld materials. Explicit analytical expressions are presented for energy reflection and transmission coefficients at an interface between two arbitrarily oriented transversely isotropic materials. By applying explicit analytical expressions for energy reflection and transmission coefficients, numerical results are presented for several columnar grain orientations of the transverse isotropic austenitic weld material including both real and complex domain of the reflected and transmitted normal component of slowness vectors. Valid domains of incident wave vector angles, angular dependency of energy reflection and transmission coefficients and critical angles for reflected and transmitted waves are discussed. The existence of a reflected (or) transmitted second branch of quasi shear vertical waves and its consequence to the ultrasonic non destructive testing of austenitic weld materials are investigated. The presented comprehensive quantitative evaluation provides an overview on the effect of anisotropic properties on energy reflection and transmission coefficients in columnar grained austenitic weld materials. KW - Anisotropy KW - Inhomogeneous waves KW - Austenitic weld material KW - Polarization vector KW - Energy skewing KW - Critical angle KW - Energy flux vector KW - Evanescent waves PY - 2012 U6 - https://doi.org/10.1007/s10921-012-0140-1 SN - 0195-9298 SN - 1573-4862 VL - 31 IS - 3 SP - 253 EP - 269 PB - Plenum Press CY - New York, NY AN - OPUS4-27792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Chinta, P.K. A1 - Kreutzbruck, Marc A1 - Rethmeier, Michael A1 - Prager, Jens T1 - Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison N2 - Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32 mm thick austenitic weld material and 62 mm thick austenitic cladded material is discussed. KW - Ultrasonic field KW - 2D ray tracing KW - Directivity KW - Anisotropic austenitic weld KW - Non-destructive testing PY - 2013 U6 - https://doi.org/10.1016/j.ultras.2012.07.006 VL - 53 IS - 2 SP - 396 EP - 411 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-27324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -