TY - JOUR A1 - Darlatt, Erik A1 - Nefedov, A. A1 - Traulsen, C.H.-H. A1 - Poppenberg, J. A1 - Richter, S. A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Illgen, René A1 - Kühn, Julius A1 - Schalley, C.A. A1 - Wöll, Ch. A1 - Unger, Wolfgang T1 - Interperetation of experimental N K NEXAFS of azide, 1,2,3-triazole and terpyridyl groups by DFT spectrum simulations N2 - Experimental N K-edge NEXAFS data of surface immobilized azide, 1,2,3-triazole and terpyridyl groups are interpreted with the help of DFT spectrum simulations. Assignments of π* resonances in experimental N K-edge NEXAFS spectra to nitrogen atoms within these functional groups have been made. The azide was immobilized on gold as the head group of a thiol SAM, 1,2,3-triazole was formed on this SAM by click reaction and terpyridyl groups were introduced as substituents of the acetylene used for the click reaction. For azide-terminated molecules, DFT spectrum simulations are found to be useful to find measurement conditions delivering experimental N K-edge NEXAFS data with negligible X-ray damage. The 1,2,3-triazole group is found to be rather stable under X-ray irradiation. KW - N K-edge NEXAFS KW - XANES KW - Surface click chemistry KW - Density functional theory KW - Azide KW - 1,2,3-Triazole PY - 2012 U6 - https://doi.org/10.1016/j.elspec.2012.09.008 SN - 0368-2048 SN - 1873-2526 VL - 185 IS - 12 SP - 621 EP - 624 PB - Elsevier CY - Amsterdam AN - OPUS4-27774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Traulsen, Christoph Hans-Henning A1 - Darlatt, Erik A1 - Richter, S. A1 - Poppenberg, J. A1 - Traulsen, N.L. A1 - Linder, I. A1 - Lippitz, Andreas A1 - Dietrich, Paul A1 - Dib, B. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - The versatility of 'Click' reactions at surfaces: Molecular recognition at interfaces N2 - In order to investigate molecular recognition on surfaces, an azide-functionalized monolayer was deposited on gold. The monolayer was characterized by X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) experiments and the decomposition of the azide upon irradiation with X-ray beams was investigated. Subsequently, various alkyne-functionalized host and guest molecules were attached to the azide by 1,3-dipolar cycloaddition. These modified surfaces and their host–guest chemistry were analysed by XPS and angle-resolved NEXAFS. The reversibility of guest binding was shown for one example as a proof of principle. KW - 'Click' reaction KW - Azide-terminated surfaces KW - SAMs KW - Host guest molecules KW - Molecular recognition at interfaces PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-306463 SN - 2046-2069 VL - 4 IS - 34 SP - 17694 EP - 17702 PB - RSC Publishing CY - London AN - OPUS4-30646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -