TY - JOUR A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Feldmann, Ines A1 - Schuessler, J.A. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Schott, J. T1 - How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution through attachment N2 - Free-living and mycorrhizal fungi are able to enhance the weathering of rock and other solid substrates. Deciphering the exact mechanisms of these natural processes requires their experimental simulation. Moreover, by performing these simulations with genetically amenable rock-weathering fungi, one can knock-out certain fungal traits and consequently identify their weathering-relevant function. Here, the effect of the rock-inhabiting fungus, Knufia petricola A95, on the dissolution kinetics of an Fe-bearing olivine (Mg1.86Fe0.19SiO4) is investigated at 25 °C and pH 6 using reproducible batch and mixed flow experiments. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, which produces more extracellular polymeric substances (EPS) than the wild type (WT), enables the comparative study of the role of melanin and EPS in olivine dissolution. In abiotic dissolution experiments, the olivine dissolution rate decreased considerably over time at pH 6 but not at pH 3.5. This inhibition of abiotic olivine dissolution at pH 6 was most likely caused by the in-situ oxidation of ferrous Fe and/or the precipitation of ferric hydroxides at the olivine surface. In corresponding biotic experiments at pH 6, both the wild type K. petricola and its melanin-deficient mutant ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe oxidation and precipitation were thus prevented and olivine dissolution proceeded faster than in the abiotic experiments. By sequestering Fe directly at the olivine surface, the attached wild type K. petricola cells were particularly efficient at preventing the oxidation of Fe at the mineral surface: the slowdown of olivine dissolution almost completely disappeared. The attachment capacity of these wild type cells is most likely mediated by wild type-specific EPS. Our presented experimental systems allow the oxidation of mineral-released Fe and include a rock-inhabiting fungus, thus simulating chemical, physical and biological conditions that set dissolution rates in a way that is relevant to natural ecosystems. KW - Black fungi KW - Bio-weathering KW - Forsterite KW - Knock-out mutant KW - Extracellular polymeric substances KW - Melanin Adhesion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509332 VL - 282 SP - 76 EP - 97 PB - Elsevier Ltd. AN - OPUS4-50933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A. A1 - Frings, P. J. A1 - Sobotka, R. A1 - Gorbushina, Anna A1 - von Blanckenburg, F. T1 - Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants N2 - In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is −0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (−2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (−0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants. KW - Cyanobacteria KW - Black fungi KW - Nostoc punctiforme KW - Knufia petricola KW - Magnesium PY - 2018 U6 - https://doi.org/10.1021/acs.est.8b02238 SN - 1520-5851 SN - 0013-936X VL - 52 IS - 21 SP - 12216 EP - 12224 PB - ACS Publications AN - OPUS4-46832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -