TY - CONF A1 - Schempp, Philipp A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Tang, Z. A1 - Seefeld, T. A1 - Cross, C.E. ED - Babu, S. S. ED - Bhadeshia, H.K. ED - Cross, C.E. ED - David, S.A. ED - DebRoy, T. ED - DuPont, J.N. ED - Koseki, T. ED - Liu, S. T1 - Influence of alloy and solidification parameters on grain refinement in aluminium weld metal due to inoculation N2 - Refinement of the weld metal grain structure can improve the mechanical properties of the weld and decrease the susceptibility to solidification cracking of the weld metal. In this study, commercial Al Ti5B1 grain refiner was used to refine the microstructure of LB (laser beam) and GTA (gas tungsten arc) aluminum welds by inoculation. The grain refiner additions led to a significant decrease in the weld metal mean grain size whereby a transition from columnar to equiaxed grain structure (Columnar to Equiaxed Transition, CET) was observed. The development of both grain size and shape depended upon the base metal (Al alloys 1050A, 5083 and 6082) and upon the welding process. The GTA welding process allowed a more pronounced and a more efficient refinement than in LB welds. Furthermore, the influence of the solidification conditions on the CET was investigated through temperature measurements in the weld metal. The temperature profiles revealed a faster solidification of LB welds than in GTA welds. The results from the temperature measurements were also used to estimate (according to an existing model) the critical thermal gradient at which the CET occurs. T2 - 9th International conference on trends in welding research CY - Chicago, Illinois, USA DA - 04.06.2012 KW - Aluminium KW - LBW KW - GTAW KW - Grain refinement KW - Alloy 1050A KW - Alloy 5083 KW - Alloy 6082 KW - Al Ti5B1 PY - 2013 SN - 978-1-62708-998-2 SP - 98 EP - 107 PB - ASM international AN - OPUS4-27907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Influence of solute content and solidification parameters on grain refinement of aluminum weld metal N2 - Grain refinement provides an important possibility to enhance the mechanical properties (e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape (CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size. KW - Aluminium KW - GTA welding KW - Grain refinement KW - Alloy 1050A KW - Alloy 5083 KW - Alloy 6082 KW - Al Ti5B1 PY - 2013 U6 - https://doi.org/10.1007/s11661-013-1649-3 SN - 1073-5623 SN - 1543-1940 VL - 44A IS - 7 SP - 3198 EP - 3210 PB - The Minerals, Metals and Materials Society CY - Warrendale AN - OPUS4-28656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing with novel Al-Mg-Si filler wire - Assessment of weld quality and mechanical properties N2 - Wire arc additive manufacturing enables the production of near-net shape large-volume metallic components leveraging an established industrial base of welding and cladding technology and adapting it for layer-wise material deposition. However, the complex relationship between the process parameters and resulting mechanical properties of the components still remains challenging. In case of high-strength Al-Mg-Si aluminum alloys, no commercial filler wires are yet available due the high susceptibility of solidification cracking as well as the necessary efforts to obtain acceptable mechanical properties. To address this need, we evaluated a novel filler wire based on AlMg0.7Si doped with a Ti5B1 master alloy to foster fine equiaxed grains within the deposited metal. The correlation between the process parameters and component quality was examined by analyzing the size and distribution of pores as well as the grain morphology. Furthermore, we evaluated the influence of different post-weld heat treatment strategies to achieve mechanical properties corresponding to the reference wrought material. We demonstrated that fine equiaxed grains in the weld metal reduced the susceptibility of solidification cracking significantly. The novel AlMg0.7Si-TiB (S Al 6063-TiB) filler wire facilitated wire arc additive manufacturing of high-strength aluminum components with mechanical properties that were almost as superior as the corresponding wrought base material. KW - Wire arc additive manufacturing KW - Precipitation hardening aluminum alloys KW - AlMg0.7SiTiB filler wire KW - Grain refinement KW - Mechanical properties PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538327 SN - 2075-4701 VL - 11 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-53832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Häcker, Ralf A1 - Pittner, Andreas A1 - Cross, C.E. A1 - Rethmeier, Michael T1 - Influence of grain size on mechanical properties of aluminium GTA weld metal N2 - Surface modification of mild steel was undertaken using two covered electrodes and two tubular electrodes. The two covered electrodes are DIN 8555: E6-UM-60 and E10-UM-60GR; however, the two tubular electrodes are E10-GF-60GR1 and E10-GF-60GR2. Chemical analysis for the weld metal and XRD of the flux covering for covered electrodes and flux core for tubular electrodes were conducted. The most important factor in determining the wear resistance is the microstructure of the deposit layers. In similar carbon equivalent electrodes E10-UM-60GR and E10-GF-60GR1, electrode E10-GF-60GR1 (tubular) shows larger carbides area fraction and better wear resistance than electrode E10-UM-60GR (covered). This could be attributed to a lower dilution associated with tubular electrode compared with covered electrode. The two tubular electrodes showed higher wear resistance than the covered electrodes which is mainly due to the larger Fe-Cr carbide precipitation area fraction. KW - GTA welding KW - Aluminium KW - Grain refinement KW - Tensile tests KW - Tear tests PY - 2014 U6 - https://doi.org/10.1007/s40194-014-0132-0 SN - 0354-7965 VL - 58 IS - 4 SP - 491 EP - 497 PB - Drustvo za Unapredjivanje Zavarivanja u Srbiji CY - Beograd AN - OPUS4-35103 LA - srp AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Oder, Gabriele A1 - Neumann, R.S. A1 - Rooch, Heidemarie A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Rethmeier, Michael T1 - Solidification of GTA aluminium weld metal: Part I - Grain morphology dependent upon alloy composition and grain refiner content KW - Aluminium KW - Gas tungsten arc welding (GTAW) KW - Grain refinement KW - Columnar to equiaxed transition (CET) KW - Epitaxial nucleation KW - Duplex nucleation theory PY - 2014 SN - 0043-2296 SN - 0096-7629 VL - 93 SP - 53-s - 59-s PB - American Welding Society CY - New York, NY AN - OPUS4-30413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing of high strength al-mg-si alloys N2 - Direct energy deposition additive manufacturing technologies utilizing an electric arc offer a great potential in generating large volume metal components. However, the selection of process parameters that yield the desired near net shape design as well as the requested mechanical component behavior is not a trivial task due to the complex relationship. Exemplarily for additive manufacturing of high-strength precipitation hardening AlMgSi-aluminum alloy this paper shows the application of a newly developed matching solid welding wire doped with TiB as grain refiner. The correlation between process parameters and component quality is examined analyzing the size and distribution of pores as well as the grain morphology. Furthermore, the influences of different post-weld heat treatments are evaluated to meet the reference mechanical properties of the corresponding wrought material. Finally, the digital integration of the entire additive manufacturing chain enables an overall traceability of the relevant process steps which is the basis for a reliable subsequent quality assessment. T2 - THERMEC'2023 International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications CY - Vienna, Austria DA - 02.07.2023 KW - Additive Manufacturing KW - DED-Arc KW - Grain refinement KW - High strength AlMgSi aluminium alloys KW - Mechanical properties PY - 2023 AN - OPUS4-59500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -