TY - JOUR A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Falkenberg, Rainer A1 - Kahlcke, Ole T1 - Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel N2 - The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material’s thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000 ◦C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rateindependent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given. KW - Residual stress KW - Viscoplasticity KW - Material modeling KW - Grade S960QL steel PY - 2018 U6 - https://doi.org/10.1016/j.crme.2018.08.001 VL - 346 IS - 11 SP - 1018 EP - 1032 PB - Elsevier Masson SAS AN - OPUS4-46512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ward, H. A1 - Burger, M. A1 - Chang, Y.-J. A1 - Fürstmann, P. A1 - Neugebauer, S. A1 - Radebach, A. A1 - Sproesser, G. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Uhlmann, E. A1 - Steckel, J. Ch. T1 - Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks N2 - Evaluating innovative process technologies has become highly important within the last decades. As standard tools different Life Cycle Assessment methods have been established, which are continuously improved. While those are designed for evaluating single processes they run into difficulties when it comes to assessing environmental impacts of process innovations at macroeconomic level. In this paper we develop a multi-step evaluation framework building on multi regional inputeoutput data that allows estimating macroeconomic impacts of new process technologies, considering the network characteristics of the global economy. Our procedure is as follows: i) we measure differences in material usage of process alternatives, ii) we identify where the standard processes are located within economic networks and virtually replace those by innovative process technologies, iii) we account for changes within economic systems and evaluate impacts on emissions. Within this paper we exemplarily apply the methodology to two recently developed innovative technologies: longitudinal large diameter steel pipe welding and turning of high-temperature resistant materials. While we find the macroeconomic impacts of very specific process innovations to be small, its conclusions can significantly differ from traditional process based approaches. Furthermore, information gained from the methodology provides relevant additional insights for decision makers extending the picture gained from traditional process life cycle assessment. KW - Economic wide technology replacement KW - Sustainability assessment KW - Multi-regional inputeoutput data KW - Life-cycle assessment KW - Greenhouse gas mitigation KW - Process innovations PY - 2017 U6 - https://doi.org/10.1016/j.jclepro.2016.02.062 SN - 0959-6526 SN - 1879-1786 VL - 163 SP - 154 EP - 165 PB - Elsevier Ltd. AN - OPUS4-41356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Weiß, D. T1 - Automated generation of temperature fields for numerical welding simulation KW - Welding simulation KW - Temperature field generation KW - Optimization KW - Neural networks PY - 2009 SN - 0288-4771 VL - 27 IS - 2 SP - 219 EP - 224 CY - Tokyo, Japan AN - OPUS4-19826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaumann, P. A1 - Schürmann, K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Automatically Welded Tubular X-Joints for Jacket Substructures N2 - To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints combined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatically welded tubular X-joints focusing on the location of the technical fatigue crack. The detected location of the technical crack is compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Besides, the welding process of the automated manufactured tubular X-joints is presented. KW - Tubular X-joints KW - Fatigue tests KW - Technical crack detection KW - Local fatigue spproaches PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513228 VL - 3 IS - 3-4 SP - 823 EP - 828 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-51322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaumann, P. A1 - Schürmann, K. A1 - Dänekas, C. A1 - Rethmeier, Michael A1 - Schippereit, Christian A1 - Pittner, Andreas T1 - Automatisierte Fertigung von Hohlprofilknoten für Jacket-Gründungsstrukturen T1 - Automated manufacturing of tubular joints for jacket support structures - Description of the welding process chain as well as integration of the process parameters within the fatigue design N2 - The development within the offshore wind energy sector towards more powerful turbines combined with increasing water depth for new wind parks is challenging both, the designer as well as the manufacturer of support structures. Besides XL-monopiles the jacket support structure is a reasonable alternative due to the high rigidity combined with low material consumption. However, the effort for manufacturing of the hollow section joints reduces the economic potential of jacket structures significantly. Therefore, a changeover from an individual towards a serial production based on automated manufactured tubular joints combined with standardized pipes must be achieved. Hence, this paper addresses the welding process chain of automated manufactured tubular joints including digitization of the relevant manufacturing parameters such as laser scanning of the weld seam geometry. Additionally, a methodology for the computation of the notch radius as well as the weld seam angle is presented based on the scanned profiles of three analysis points of an automated manufactured tubular X-joint. Subsequently, these parameters are considered within the notch stress approach based fatigue design and their impact is quantified by a comparison with the structural stress approach using equivalent stress concentration factors. KW - Hohlprofilknoten KW - Tubular joints KW - Automatisierte Fertigung KW - Digitalisierung KW - Schweißnahtgeometrie KW - Kerbspannungskonzept KW - Äquivalente Spannungskonzentrationsfaktoren KW - Automated manufacturing KW - Digitization KW - Weld seam geometry KW - Notch stress approach KW - Equivalent stress concentration factors PY - 2018 U6 - https://doi.org/10.1002/stab.201810017 SN - 0038-9145 SN - 1437-1049 VL - 87 IS - 9 SP - 897 EP - 909 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-46633 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Babu, S. S. T1 - Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses N2 - Austenite grain growth during welding is a critical factor for controlling weld microstructure in addition to nominal composition and thermal cycles. Recently, experimental data suggesting a decrease in martensite start temperature with a decrease in prior austenite grain size has been published. However, the actual sensitivity of this phenomenon on residual stresses evolution in the heat-affected zone has not been investigated, yet. Therefore, a numerical model was modified to consider this phenomenon. Numerical simulations were performed for welding of a low-alloy structural steel with minimum yield strength of 355 MPa (S355J2+N) and a heat-resistant steel P91 or 9Cr–1Mo, respectively. The results clarify the influence of prior austenite grain size on the residual stress development and show the importance martensite transformation temperatures and final martensite fraction. Consequently, the residual stress evolution of P91, which completely transforms to martensite while cooling, based on the enhanced model leads to maximum stress differences of 200 MPa in the heat-affected zone. KW - Prior austenite grain size KW - Martensite start temperature KW - Welding-induced residual stress KW - Numerical simulation KW - Gas metal arc welding PY - 2013 U6 - https://doi.org/10.1016/j.commatsci.2012.11.058 SN - 0927-0256 VL - 69 SP - 251 EP - 260 PB - Elsevier CY - Amsterdam AN - OPUS4-27633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Design of neural network arc sensor for gap width detection in automated narrow gap GMAW N2 - An approach to develop an arc sensor for gap width estimation during automated NG-GMAW with a weaving electrode motion is introduced by combining arc sensor readings with optical measurements of the groove shape to allow precise analyses of the process. The two test specimen welded for this study were designed to feature a variable groove geometry in order to maximize efficiency of the conducted experimental efforts, resulting in 1696 individual weaving cycle records with associated arc sensor measurements, process parameters and groove shape information. Gap width was varied from 18 mm to 25 mm and wire feed rates in the range of 9 m/min to 13 m/min were used in the course of this study. Artificial neural networks were applied as a modelling tool to derive an arc sensor for estimation of gap width suitable for online process control that can adapt to changes in process parameters as well as changes in the weaving motion of the electrode. Wire feed rate, weaving current, sidewall dwell currents and angles were defined as inputs to calculate the gap width. The evaluation of the proposed arc sensor model shows very good estimation capabilities for parameters sufficiently covered during the experiments. KW - GMA welding KW - Narrow gap welding KW - Sensor KW - Neural networks KW - Adaptive control PY - 2018 U6 - https://doi.org/10.1007/s40194-018-0584-8 SN - 1878-6669 SN - 0043-2288 VL - 62 IS - 4 SP - 819 EP - 830 PB - Springer CY - Berlin AN - OPUS4-45234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Pittner, Andreas A1 - Michael, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Effect of cooling rate on microstructure and properties of microalloyed HSLA steel weld metals N2 - Two high strength Nb/Ti microalloyed S690QL steels were welded with identical filler material, varying welding parameters to obtain three cooling rates: slow, medium and fast cooling. As cooling rate increased, the predominantly acicular ferrite in Nb weld metal (WM) is substituted by bainite, with a consequence of obvious hardness increase, but in Ti WM, no great variation of acicular ferrite at all cooling rates contributed to little increment of hardness. The transition between bainite and acicular ferrite has been analysed from the point view of inclusions characteristics, chemical composition and cooling rate. Excellent Charpy toughness at 233 K was obtained with acicular ferrite as predominantly microstructure. Even with bainite weld of high hardness, the toughness was nearly enough to fulfill the minimal requirements. WM for Ti steel showed to be markedly less sensitive to the variations of cooling rate than that for Nb steel. KW - High strength steel KW - Weld metal KW - Cooling rate KW - Charpy toughness KW - Acicular ferrite PY - 2015 U6 - https://doi.org/10.1179/1362171815Y.0000000026 SN - 1362-1718 VL - 20 IS - 5 SP - 371 EP - 377 PB - Taylor and Francis CY - London, UK AN - OPUS4-36518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-596502 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Energy efficiency and environmental impacts of high power gas metal arc welding N2 - Single-wire gas metal arc welding (SGMAW) and high power tandem GMAW (TGMAW) are evaluated with respect to energy efficiency. The key performance indicator electrical deposition efficiency is applied to reflect the energy efficiency of GMAW in different material transfer modes. Additionally, the wall-plug efficiency of the equipment is determined in order to identify the overall energy consumption. The results show that energy efficiency can be increased by 24% and welding time is reduced over 50% by application of the tandem processes. A comparative life cycle assessment of a 30-mm-thick weld is conducted to investigate the influences of the energy efficiency on the environmental impacts. The environmental impacts on the categories global warming potential, acidification potential, eutrophication potential, and photochemical ozone creation potential can be reduced up to 11% using an energy-efficient TGMAW process. KW - Tandem gas metal arc welding KW - Life cycle assessment (LCA) KW - Energy efficiency KW - High power welding PY - 2017 U6 - https://doi.org/10.1007/s00170-017-9996-7 SN - 0268-3768 SN - 1433-3015 VL - 91 IS - 9-12 SP - 3503 EP - 3513 PB - Springer CY - London AN - OPUS4-39564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -