TY - CONF A1 - Sproesser, G. A1 - Schenker, S. A1 - Pittner, Andreas A1 - Borndörfer, R. A1 - Rethmeier, Michael A1 - Chang, Y.-J. A1 - Finkbeiner, M. T1 - Sustainable welding process selection based on weight space partitions N2 - Selecting a welding process for a given application is crucial with respect to the sustainability of part manufacturing. Unfortunately, since welding processes are evaluated by a number of criteria, preferences for one or the other process can be contradictory. However, the prevalent procedure of weight assignment for each criterion is subjective and does not provide information about the entire solution space. From the perspective of a decision maker it is important to be able to assess the entire set of possible weightings and answer the question which welding process is optimal for which set of weights. This issue is investigated by means of a weight space partitioning approach. Two welding processes are considered with respect to three criteria that reflect their economic and environmental performance. In order to find the most sustainable welding process the underlying weight space partition is evaluated. T2 - 13th Global Conference on Sustainable Manufacturing – Decoupling Growth from Resource Use CY - Bình Dương New City, Vietnam DA - 16.09.2015 KW - Welding costs KW - Multi-criteria decision support KW - LCA KW - Welding process selection KW - GMAW KW - Multi-attribute decision method PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-353740 SN - 2212-8271 VL - 40 SP - 127 EP - 132 PB - Elsevier B.V. AN - OPUS4-35374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sproesser, G. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Increasing performance and energy efficiency of Gas Metal Arc Welding by a high power tandem process N2 - Standard Gas Metal Arc Welding (Standard GMAW) and a high power Tandem GMAW (TGMAW) process are evaluated with respect to energy efficiency. Current, voltage and overall equipment power are measured and energy consumption is determined. The new key performance indicator Electrical Deposition Efficiency is introduced to reflect the energy efficiency of GMAW processes. Additionally, wallplug efficiency of the equipment is determined in order to identify the overall energy consumption. Results show that energy efficiency as well as economic process performance can be significantly increased by application of the TGMAW process. Furthermore findings indicate that wall-plug efficiency of the equipment is independent of power level and material transfer mode. A metal plate of 30 mm thick structural steel is joined by Standard GMAW and TGMAW to demonstrate the total energy savings for a real weld. Electricity consumption is reduced by more than 20 % using the high power TGMAW process. T2 - 13th Global Conference on Sustainable Manufacturing - Decoupling Growth from Resource Use CY - Bình Dương New City, Vietnam DA - 16.09.2015 KW - Thick metal plate welding KW - Energy efficiency KW - Tandem Gas Metal Arc Welding KW - High power welding PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-353762 SN - 2212-8271 VL - 40 SP - 643 EP - 648 PB - Elsevier B.V. AN - OPUS4-35376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -