TY - CONF A1 - Schaumann, P. A1 - Schürmann, K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Prediction of the Initial Fatigue Crack Location of Automatically Welded Tubular Joints for Jacket Support Structures T2 - Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications N2 - To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints com-bined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatical-ly welded tubular X-joints focusing on the location of the technical fatigue crack. For this X-joint, the detect-ed location of the technical crack is then compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Additionally, the fatigue prone hot spot according to both approaches is compared for a typical offshore jacket double-K-joint to emphasize the significance of the presented outcomes for the existing offshore structures. Besides, the welding process of the automated manufactured tubular X-joints is presented. T2 - 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC) CY - Cape Town, SOUTH AFRICA DA - 02.09.2019 KW - Lightweight Design KW - Jacket Support Structures KW - Arc Welding Automation KW - Fatigue KW - Offshore Wind PY - 2019 SN - 978-1-138-38696-9 DO - https://doi.org/10.1201/9780429426506-100 VL - 2019 SP - 575 EP - 580 AN - OPUS4-51847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -