TY - JOUR A1 - Chang, Y.-J. A1 - Sproesser, G. A1 - Neugebauer, S. A1 - Wolf, K. A1 - Scheumann, R. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Finkbeiner, M. T1 - Environmental and social life cycle assessment of welding technologies N2 - Life Cycle Assessment (LCA) and Social Life Cycle Assessment (SLCA) are applied in evaluating possible social and environmental impacts of the state-of-art welding technologies, such as Manual Metal Arc Welding (MMAW), Manual Gas Metal Arc Welding (GMAW), Automatic GMAW and Automatic Laser-Arc Hybrid Welding (LAHW). The LCA results indicate that for 1 meter weld seam, MMAW consumes the largest amount of resources (like filler material and coating on electrodes) and energy, which contributes to comparatively higher environmental impacts in global warming potential, acidification, photochemical ozone creation potential and eutrophication than other chosen processes. With regard to social aspects, the health issues and fair salary are under survey to compare the relative potential risk on human health caused by fumes in different welding technologies, and to indicate the sufficiency of current salary of welders in Germany. The results reflect that the wage status of welders is still fair and sufficient. The manual processes bring much higher potential risk of weldersÂ’ health than the automatic processes, especially MMAW. KW - Fair salary KW - Human health KW - Life Cycle Assessment (LCA) KW - Social Life Cycle Assessment (SLCA) KW - Welding PY - 2015 U6 - https://doi.org/10.1016/j.procir.2014.07.084 SN - 2212-8271 VL - 26 SP - 293 EP - 298 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-33036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, Gunther A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Life cycle assessment of welding technologies for thick metal plate welds N2 - Life Cycle Assessment (LCA) is applied in evaluating environmental impacts of state-of-the-art welding technologies. Manual Metal Arc Welding (MMAW), Laser Arc-Hybrid Welding (LAHW) and two Gas Metal Arc Welding (GMAW) variants are used to join a plate of 20 mm thick structural steel. The LCA results indicate that for 1 m weld seam, MMAW causes the highest environmental impacts in global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), and photochemical ozone creation potential (POCP) among the selected processes, and the LAHW variant performances the least. Filler material and electricity consumptions generally dominate the impacts and reach shares of up to 80% and 61% in the respective impact categories. However, electrode coating consumption in MMAW remarkably contributes impacts on AP and EP, for instance 52% of AP and 76% of EP. Strategies for improvement of the applied welding technologies are discussed. KW - Life Cycle Assessment (LCA) KW - Arc welding KW - Laser arc-hybrid welding KW - Resource efficiency PY - 2015 U6 - https://doi.org/10.1016/j.jclepro.2015.06.121 SN - 0959-6526 VL - 108 IS - Part: A SP - 46 EP - 53 PB - Elsevier Science CY - Amsterdam AN - OPUS4-34969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -