TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes considering upstream and downstream process steps N2 - In manufacturing, fusion welding processes consume significant resources, presenting a significant opportunity for reducing environmental impact. Although there is a qualitative understanding of the environmental implications of these processes, a quantitative assessment of key parameters remains complex. This study introduces a welding-specific methodology that employs life cycle assessment (LCA) to quantitatively evaluate the environmental footprint of fusion welding technologies. Our approach identifies and analyses the principal parameters affecting the environmental performance of various welding techniques, including traditional joint welding and additive manufacturing via the Direct Energy Deposition-Arc (DED-Arc) process. Real-time resource usage data is integrated to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact. This facilitates the advancement of sustainable manufacturing practices. T2 - Joining Smart Technologies - International Automotive Conference CY - Wels, Austria DA - 10.05.2023 KW - Life Cycle Assessment KW - Arc welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes strategies and implementation N2 - In manufacturing, fusion welding processes use a lot of resources, which presents an opportunity to reduce environmental impact. While there is a general understanding of the environmental impact of these processes, it is difficult to quantitatively assess key parameters. This study introduces a welding-specific methodology that uses life cycle assessment (LCA) to evaluate the environmental impact of fusion welding technologies. Our approach analyses the main parameters that affect the environmental performance of different welding techniques, including traditional methods and additive manufacturing through the Direct Energy Deposition-Arc (DED-Arc) process. We integrate real-time resource usage data to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact, facilitating the advancement of sustainable manufacturing practices. T2 - CEMIVET - Circular Economy in Metal Industries CY - Berlin, Germany DA - 06.06.2023 KW - Life Cycle Assessment KW - Fusion welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing of high strength al-mg-si alloys N2 - Direct energy deposition additive manufacturing technologies utilizing an electric arc offer a great potential in generating large volume metal components. However, the selection of process parameters that yield the desired near net shape design as well as the requested mechanical component behavior is not a trivial task due to the complex relationship. Exemplarily for additive manufacturing of high-strength precipitation hardening AlMgSi-aluminum alloy this paper shows the application of a newly developed matching solid welding wire doped with TiB as grain refiner. The correlation between process parameters and component quality is examined analyzing the size and distribution of pores as well as the grain morphology. Furthermore, the influences of different post-weld heat treatments are evaluated to meet the reference mechanical properties of the corresponding wrought material. Finally, the digital integration of the entire additive manufacturing chain enables an overall traceability of the relevant process steps which is the basis for a reliable subsequent quality assessment. T2 - THERMEC'2023 International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications CY - Vienna, Austria DA - 02.07.2023 KW - Additive Manufacturing KW - DED-Arc KW - Grain refinement KW - High strength AlMgSi aluminium alloys KW - Mechanical properties PY - 2023 AN - OPUS4-59500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -