TY - GEN A1 - Pittner, Andreas A1 - Weiss, D. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - A methodology for the fast temperature field generation for welding simulation T2 - 17th International Conference "Computer Technology in Welding and Manufacturing" CY - Cranfield, UK DA - 2008-06-18 KW - Welding simulation KW - Temperature field generation KW - Short calculation time KW - Multiple experiments KW - Inverse heat conduction problem KW - Neural networks PY - 2008 SN - 978-1-903761-07-6 SP - 1 EP - 12 PB - TWI CY - Cambridge AN - OPUS4-18290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Weiss, D. A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - V.I. Makhnenko, T1 - Fast generation and prediction of welding temperature fields for multiple experiments N2 - The objective of this paper is to demonstrate a new simulation technique which allows the fast and automatic generation to temperature fields based on a combination of empirical and phenomenological modelling techniques. The automatic calibration of the phenomenological model is performed by a multi-variable global optimisation routine which yields the optimal fit between simulated and experimental weld charcteristics without the need for initial model parameters. For exemplary welding processes it is shown that linear 3D heat conduction models can approximate measured temperature fields with a high accuracy. The modelling approach presented comprises the automatic calibration against multiple experiments which permits simulating the temperature field for unknown process parameters. The validation of this composite simulation model is performed for exemplary welding processes and includes the prediction of the fusion line in the cross section and the corresponding thermal cycles. T2 - 4th International Conference - Mathematical modelling and information technologies in welding and related processes CY - Katsiveli, Crimea, Ukraine DA - 2008-05-27 KW - Welding simulation KW - GMA-laser hybrid welding KW - Laser beam welding KW - Neural networks KW - Global optimisation KW - Stochastic search method KW - Inverse heat conduction problem KW - Model prediction PY - 2008 SP - 134 EP - 140 CY - Kiev, Ukraine AN - OPUS4-19639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Pittner, Andreas A1 - Weiss, D. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Fast temperature field generation for welding simulation and reduction of experimental effort N2 - The quality of welding processes is governed by the occurring induced distortions yielding an increase in production costs due to necessary reworking. Especially for more complex specimens it is difficult to evaluate the optimal configuration of welding sequences in order to minimise the distortion. Even experienced welding operators can solve this task only by trial and error which is time and cost consuming. In modern engineering the application of welding simulation is already known to be able to analyse the heat effects of welding virtually. However, the welding process is governed by complex physical interactions. Thus, recent weld thermal models are based on many simplifications. The state of the art is to apply numerical methods in order to solve the transient heat conduction equation. Therefore, it is not possible to use the real process parameters as input for the mathematical model. The model parameters which allow calculating a temperature field that is in best agreement with the experiments cannot be defined directly but inversely by multiple simulations runs. In case of numerical simulation software based on finite discretisation schemes this approach is very time consuming and requires expert users. The weld thermal model contains an initial weakness which has to be adapted by finding an optimal set of model parameters. This process of calibration is often done against few experiments. The range of model validity is limited. An extension can be obtained by performing a calibration against multiple experiments. The focus of the paper is to show a combined modelling technique which provides an efficient solution of the inverse heat conduction problem mentioned above. On the one hand the inverse problem is solved by application of fast weld thermal models which are closed form solutions of the heat conduction equation. In addition, a global optimisation algorithm allows an automated calibration of the weld thermal model. This technique is able to provide a temperature field automatically that fits the experimental one with high accuracy within minutes on ordinary office computers. This fast paradigm permits confirming the application of welding simulation in an industrial environment as automotive industry. On the other hand, the initial model weakness is compensated by calibrating the model against multiple experiments. The unknown relationship between model and process parameters is approximated by a neural network. The validity of the model is increased successively and enables to decrease experimental effort. For a test case it is shown, that this approach yields accurate temperature fields within very short amount of time for unknown process parameters as input data to the model contributing to the requirement to construct a substitute system of the real welding process. KW - Welding simulation KW - Temperature field generation KW - Short calculation time KW - Multiple experiments KW - Inverse heat conduction problem KW - Neural networks PY - 2009 IS - SC-Auto-32-09 SP - 1 EP - 11 PB - International Institute of Welding CY - Paris AN - OPUS4-19744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Weiß, D. A1 - Rethmeier, Michael T1 - Application of a combined modelling technique to reduce experimental effort - a case study for laser-GMA-hybrid welding T2 - VI. International conference "Beam technologies & laser application" CY - Saint Petersburg, Russia DA - 2009-09-23 PY - 2009 SP - 97 EP - 102 CY - Saint Petersburg, Russia AN - OPUS4-20882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Weiß, D. A1 - Rethmeier, Michael ED - Cerjak, H. ED - Enzinger, N. T1 - An efficient solution of the inverse heat conduction problem for welding simulation PY - 2010 SN - 978-3-85125-127-2 SP - 761 EP - 791 PB - Verlag der Technischen Universität Graz AN - OPUS4-23154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Weiß, D. T1 - Automated generation of temperature fields for numerical welding simulation KW - Welding simulation KW - Temperature field generation KW - Optimization KW - Neural networks PY - 2009 SN - 0288-4771 VL - 27 IS - 2 SP - 219 EP - 224 CY - Tokyo, Japan AN - OPUS4-19826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karkhin, Victor A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Simulation of inverse heat conduction problems in fusion welding with extended analytical heat source models N2 - The paper presents bounded volume heat sources and the corresponding functional-analytical expressions for the temperature field. The power density distributions considered here are normal, exponential and parabolic. The sources model real heat sources like the welding arc, laser beam, electron beam, etc., the convection in the weld pool as well as the latent heat due to fusion and solidification. The parameters of the heat source models are unknown a priori and have to be evaluated by solving an inverse heat conduction problem. The functional-analytical technique for calculating 3D temperature fields in butt welding is developed. The proposed technique makes it possible to reduce considerably the total time for data input and solution. It is demonstrated with an example of laser beam welding of steel plates. KW - Laser beam welding KW - Volume heat source KW - Functional-analytical solution KW - Inverse modelling PY - 2011 U6 - https://doi.org/10.1007/s11706-011-0137-1 SN - 2095-025X SN - 2095-0268 VL - 5 IS - 2 SP - 119 EP - 125 PB - Springer CY - Secaucus, N.J. AN - OPUS4-24164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karkhin, Victor A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - Halmoy, E. T1 - Simulation of the temperature field in laser beam welding by inverse technique N2 - This paper presents volume heat sources and the corresponding functional analytical Solutions for the transient temperature field. The considered energy distributions are normal, exponential and parabolic. The method follows the common approach in Computational Welding Mechanics (CWM) to account for the physics of the welding process and the resulting temperature field by phenomenological models for heat conduction. Therefore, the used heat source models are apparent heat sources that incorporate the real heat input as well as the fluid flow in the weld pool and the latent heat connected with phase transformations. The heat source models provide welding characteristics like thermal cycle and Fusion line in the cross section within short computational time. Consequently, inverse techniques on basis of optimisation algorithms enable the adaptation of the models to the experimental data efficiently. Furthermore, the direct evaluation of the energy distribution for the experimental fusion line in the cross section is demonstrated which enhances the numerical optimisation by reducing the number of unknown model Parameters and providing a reasonable initial guess within the model parameter space. The proposed temperature field models are validated with real laser beam welding experiments. T2 - 13th Conference on laser materials processing in the nordic countries CY - Trondheim, Norway DA - 27.06.2011 KW - Volume heat source KW - Inverse modelling KW - Functional analysis KW - Laser beam welding PY - 2011 SP - 223 EP - 234 AN - OPUS4-24165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Karkhin, V.A. A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - Makhnenko, V.I. T1 - Heat source models in simulation of heat flow in fusion welding T2 - 5th International Conference - Mathematical modelling and information technologies in welding and related processes CY - vil. Katsiveli, Crimea, Ukraine DA - 2010-05-25 PY - 2010 SN - 978-966-8872-15-0 SP - 56 EP - 60 CY - Kiev, Ukraine AN - OPUS4-23382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Weiß, D. ED - Hirata, Yoshinori ED - Manabu Tanaka, T1 - Automated generation of temperature fields for numerical welding simulation T2 - 8th International Welding Symposium - Innovations in Welding and Joining for a New Era in Manufacturing CY - Kyoto, Japan DA - 2008-11-16 KW - Welding simulation KW - Temperature Field Generation KW - Optimization KW - Neural Networks PY - 2008 SP - 158 PB - Japan Welding Society CY - Kyoto AN - OPUS4-18614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -