TY - JOUR A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Falkenberg, Rainer A1 - Kahlcke, Ole T1 - Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel JF - Comptes Rendus Mecanique - Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive N2 - The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material’s thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000 ◦C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rateindependent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given. KW - Residual stress KW - Viscoplasticity KW - Material modeling KW - Grade S960QL steel PY - 2018 DO - https://doi.org/10.1016/j.crme.2018.08.001 VL - 346 IS - 11 SP - 1018 EP - 1032 PB - Elsevier Masson SAS AN - OPUS4-46512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ward, H. A1 - Burger, M. A1 - Chang, Y.-J. A1 - Fürstmann, P. A1 - Neugebauer, S. A1 - Radebach, A. A1 - Sproesser, G. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Uhlmann, E. A1 - Steckel, J. Ch. T1 - Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks JF - Journal of Cleaner Production N2 - Evaluating innovative process technologies has become highly important within the last decades. As standard tools different Life Cycle Assessment methods have been established, which are continuously improved. While those are designed for evaluating single processes they run into difficulties when it comes to assessing environmental impacts of process innovations at macroeconomic level. In this paper we develop a multi-step evaluation framework building on multi regional inputeoutput data that allows estimating macroeconomic impacts of new process technologies, considering the network characteristics of the global economy. Our procedure is as follows: i) we measure differences in material usage of process alternatives, ii) we identify where the standard processes are located within economic networks and virtually replace those by innovative process technologies, iii) we account for changes within economic systems and evaluate impacts on emissions. Within this paper we exemplarily apply the methodology to two recently developed innovative technologies: longitudinal large diameter steel pipe welding and turning of high-temperature resistant materials. While we find the macroeconomic impacts of very specific process innovations to be small, its conclusions can significantly differ from traditional process based approaches. Furthermore, information gained from the methodology provides relevant additional insights for decision makers extending the picture gained from traditional process life cycle assessment. KW - Economic wide technology replacement KW - Sustainability assessment KW - Multi-regional inputeoutput data KW - Life-cycle assessment KW - Greenhouse gas mitigation KW - Process innovations PY - 2017 DO - https://doi.org/10.1016/j.jclepro.2016.02.062 SN - 0959-6526 SN - 1879-1786 VL - 163 SP - 154 EP - 165 PB - Elsevier Ltd. AN - OPUS4-41356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Weiß, D. T1 - Automated generation of temperature fields for numerical welding simulation JF - Quarterly journal of the Japan Welding Society KW - Welding simulation KW - Temperature field generation KW - Optimization KW - Neural networks PY - 2009 SN - 0288-4771 VL - 27 IS - 2 SP - 219 EP - 224 CY - Tokyo, Japan AN - OPUS4-19826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaumann, P. A1 - Schürmann, K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Automatically Welded Tubular X-Joints for Jacket Substructures JF - Wiley Online Library N2 - To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints combined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatically welded tubular X-joints focusing on the location of the technical fatigue crack. The detected location of the technical crack is compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Besides, the welding process of the automated manufactured tubular X-joints is presented. KW - Tubular X-joints KW - Fatigue tests KW - Technical crack detection KW - Local fatigue spproaches PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513228 DO - https://doi.org/10.1002/cepa.1140 VL - 3 IS - 3-4 SP - 823 EP - 828 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-51322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Babu, S. S. T1 - Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses JF - Computational materials science N2 - Austenite grain growth during welding is a critical factor for controlling weld microstructure in addition to nominal composition and thermal cycles. Recently, experimental data suggesting a decrease in martensite start temperature with a decrease in prior austenite grain size has been published. However, the actual sensitivity of this phenomenon on residual stresses evolution in the heat-affected zone has not been investigated, yet. Therefore, a numerical model was modified to consider this phenomenon. Numerical simulations were performed for welding of a low-alloy structural steel with minimum yield strength of 355 MPa (S355J2+N) and a heat-resistant steel P91 or 9Cr–1Mo, respectively. The results clarify the influence of prior austenite grain size on the residual stress development and show the importance martensite transformation temperatures and final martensite fraction. Consequently, the residual stress evolution of P91, which completely transforms to martensite while cooling, based on the enhanced model leads to maximum stress differences of 200 MPa in the heat-affected zone. KW - Prior austenite grain size KW - Martensite start temperature KW - Welding-induced residual stress KW - Numerical simulation KW - Gas metal arc welding PY - 2013 DO - https://doi.org/10.1016/j.commatsci.2012.11.058 SN - 0927-0256 VL - 69 SP - 251 EP - 260 PB - Elsevier CY - Amsterdam AN - OPUS4-27633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Design of neural network arc sensor for gap width detection in automated narrow gap GMAW JF - Welding in the World N2 - An approach to develop an arc sensor for gap width estimation during automated NG-GMAW with a weaving electrode motion is introduced by combining arc sensor readings with optical measurements of the groove shape to allow precise analyses of the process. The two test specimen welded for this study were designed to feature a variable groove geometry in order to maximize efficiency of the conducted experimental efforts, resulting in 1696 individual weaving cycle records with associated arc sensor measurements, process parameters and groove shape information. Gap width was varied from 18 mm to 25 mm and wire feed rates in the range of 9 m/min to 13 m/min were used in the course of this study. Artificial neural networks were applied as a modelling tool to derive an arc sensor for estimation of gap width suitable for online process control that can adapt to changes in process parameters as well as changes in the weaving motion of the electrode. Wire feed rate, weaving current, sidewall dwell currents and angles were defined as inputs to calculate the gap width. The evaluation of the proposed arc sensor model shows very good estimation capabilities for parameters sufficiently covered during the experiments. KW - GMA welding KW - Narrow gap welding KW - Sensor KW - Neural networks KW - Adaptive control PY - 2018 DO - https://doi.org/10.1007/s40194-018-0584-8 SN - 1878-6669 SN - 0043-2288 VL - 62 IS - 4 SP - 819 EP - 830 PB - Springer CY - Berlin AN - OPUS4-45234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Pittner, Andreas A1 - Michael, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Effect of cooling rate on microstructure and properties of microalloyed HSLA steel weld metals JF - Science and Technology of Welding and Joining N2 - Two high strength Nb/Ti microalloyed S690QL steels were welded with identical filler material, varying welding parameters to obtain three cooling rates: slow, medium and fast cooling. As cooling rate increased, the predominantly acicular ferrite in Nb weld metal (WM) is substituted by bainite, with a consequence of obvious hardness increase, but in Ti WM, no great variation of acicular ferrite at all cooling rates contributed to little increment of hardness. The transition between bainite and acicular ferrite has been analysed from the point view of inclusions characteristics, chemical composition and cooling rate. Excellent Charpy toughness at 233 K was obtained with acicular ferrite as predominantly microstructure. Even with bainite weld of high hardness, the toughness was nearly enough to fulfill the minimal requirements. WM for Ti steel showed to be markedly less sensitive to the variations of cooling rate than that for Nb steel. KW - High strength steel KW - Weld metal KW - Cooling rate KW - Charpy toughness KW - Acicular ferrite PY - 2015 DO - https://doi.org/10.1179/1362171815Y.0000000026 SN - 1362-1718 VL - 20 IS - 5 SP - 371 EP - 377 PB - Taylor and Francis CY - London, UK AN - OPUS4-36518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation JF - Welding in the World N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596502 DO - https://doi.org/10.1007/s40194-024-01700-0 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Energy efficiency and environmental impacts of high power gas metal arc welding JF - The International Journal of Advanced Manufacturing Technology N2 - Single-wire gas metal arc welding (SGMAW) and high power tandem GMAW (TGMAW) are evaluated with respect to energy efficiency. The key performance indicator electrical deposition efficiency is applied to reflect the energy efficiency of GMAW in different material transfer modes. Additionally, the wall-plug efficiency of the equipment is determined in order to identify the overall energy consumption. The results show that energy efficiency can be increased by 24% and welding time is reduced over 50% by application of the tandem processes. A comparative life cycle assessment of a 30-mm-thick weld is conducted to investigate the influences of the energy efficiency on the environmental impacts. The environmental impacts on the categories global warming potential, acidification potential, eutrophication potential, and photochemical ozone creation potential can be reduced up to 11% using an energy-efficient TGMAW process. KW - Tandem gas metal arc welding KW - Life cycle assessment (LCA) KW - Energy efficiency KW - High power welding PY - 2017 DO - https://doi.org/10.1007/s00170-017-9996-7 SN - 0268-3768 SN - 1433-3015 VL - 91 IS - 9-12 SP - 3503 EP - 3513 PB - Springer CY - London AN - OPUS4-39564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chang, Y.-J. A1 - Sproesser, G. A1 - Neugebauer, S. A1 - Wolf, K. A1 - Scheumann, R. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Finkbeiner, M. T1 - Environmental and social life cycle assessment of welding technologies JF - Procedia CIRP N2 - Life Cycle Assessment (LCA) and Social Life Cycle Assessment (SLCA) are applied in evaluating possible social and environmental impacts of the state-of-art welding technologies, such as Manual Metal Arc Welding (MMAW), Manual Gas Metal Arc Welding (GMAW), Automatic GMAW and Automatic Laser-Arc Hybrid Welding (LAHW). The LCA results indicate that for 1 meter weld seam, MMAW consumes the largest amount of resources (like filler material and coating on electrodes) and energy, which contributes to comparatively higher environmental impacts in global warming potential, acidification, photochemical ozone creation potential and eutrophication than other chosen processes. With regard to social aspects, the health issues and fair salary are under survey to compare the relative potential risk on human health caused by fumes in different welding technologies, and to indicate the sufficiency of current salary of welders in Germany. The results reflect that the wage status of welders is still fair and sufficient. The manual processes bring much higher potential risk of welders’ health than the automatic processes, especially MMAW. KW - Fair salary KW - Human health KW - Life Cycle Assessment (LCA) KW - Social Life Cycle Assessment (SLCA) KW - Welding PY - 2015 DO - https://doi.org/10.1016/j.procir.2014.07.084 SN - 2212-8271 VL - 26 SP - 293 EP - 298 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-33036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Environmental energy efficiency of single wire and tandem gas metal arc welding JF - Welding in the World N2 - This paper investigates gas metal arc welding (GMAW) with respect to energy consumption and its associated environmental impacts. Different material transfer modes and power levels for single wire GMAW (SGMAW) and tandem GMAW (TGMAW) are evaluated by means of the indicator electrical deposition efficiency. Furthermore, the wall-plug efficiency of the equipment is measured in order to describe the total energy consumption from the electricity grid. The results show that the energy efficiency is highly affected by the respective process and can be significantly enhanced by a TGMAW process. The wall-plug efficiency of the equipment shows no significant dependency on the power range or the material transfer mode. Moreover, the method of life cycle assessment (LCA) is adopted in order to investigate the influences of energy efficient welding on the environmental impacts. In the comparative LCA study, the demand of electrical energy is reduced up to 24%. In consequence, the indicator values for global warming potential (100), acidification potential, eutrophication potential, and photochemical ozone creation potential are reduced up to 11%. KW - Energy input KW - Tandem welding KW - MAG welding KW - Environment KW - Lifetime PY - 2017 DO - https://doi.org/10.1007/s40194-017-0460-y SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 4 SP - 733 EP - 743 PB - Springer CY - Heidelberg AN - OPUS4-39877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neubert, Sebastian A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Experimental determination of TRIP parameter K for mild- and high strength low alloy steels and a super martensitic filler material JF - SpringerOpen N2 - A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble® 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior. KW - Transformation induced plasticity (TRIP) KW - Phase transformation KW - High-strength low-alloy steel KW - Super martensitic filler material KW - Thermo physical simulation KW - Gleeble experiments PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-367297 DO - https://doi.org/10.1186/s40064-016-2474-0 VL - 5 IS - 575 SP - Paper 754, 1 EP - 16 PB - SpringerPlus AN - OPUS4-36729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaumann, P. A1 - Schürmann, K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Experimental investigations on the fatigue resistance of automatically welded tubular X-joints for jacket support structures JF - Journal of Physics: Conference Series N2 - The development within the offshore wind sector towards more powerful turbines combined with increasing water depth for new wind parks is challenging both the designer as well as the manufacturer of bottom fixed support structures. Besides XL-monopiles, the market developed an innovative and economic jacket support structure which is based on automatically manufactured tubular joints combined with standardized pipes. Besides the improvements for a serial manufacturing process the automatically welded tubular joints show a great potential in terms of fatigue resistance e.g. due to a smooth weld geometry without sharp notches. However, these benefits are not considered yet within the fatigue design process of automatically manufactured jacket substructures according to current standards due to the lack of suitable S-N curves. Therefore, 32 axial fatigue tests on single and double-sided automatically welded tubular X-joints have been performed to determine a new hot spot stress related S-N curve. Based on these constant amplitude fatigue tests a new S-N curve equal to a FAT 126 curve was computed which implicitly includes the benefits of the automatically welding procedure. T2 - EERA Deep Wind 2020 CY - Trondheim, Norway DA - 15.01.2020 KW - Notch stress approach KW - Fatigue tests KW - Automated manufacturing KW - Tubular X-joints KW - Structural stress approach PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518509 DO - https://doi.org/10.1088/1742-6596/1669/1/012022 VL - 1669 SP - 012022 PB - IOP Publishing Ltd AN - OPUS4-51850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Weiß, D. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Fast temperature field generation for welding simulation and reduction of experimental effort JF - Welding in the world N2 - The quality of welding processes is governed by the occurring induced distortions yielding an increase in production costs due to necessary reworking. Especially for more complex specimens, it is difficult to evaluate the optimal configuration of welding sequences in order to minimize the distortion. Even experienced welding operators can solve this task only by trial and error which is time and cost consuming. In modern engineering the application of welding simulation is already known to be able to analyse the heat effects of welding virtually. However, the welding process is governed by complex physical interactions. Thus, recent weld thermal models are based on many simplifications. The state of the art is to apply numerical methods in order to solve the transient heat conduction equation. Therefore, it is not possible to use the real process parameters as input for the mathematical model. The model parameters which allow calculating a temperature field that is in best agreement with the experiments cannot be defined directly but inversely by multiple simulations runs. In case of numerical simulation software based on finite discretization schemes this approach is very time consuming and requires expert users. The weld thermal model contains an initial weakness which has to be adapted by finding an optimal set of model parameters. This process of calibration is often done against few experiments. The range of model validity is limited. An extension can be obtained by performing a calibration against multiple experiments. The focus of the paper is to show a combined modelling technique which provides an efficient solution of the inverse heat conduction problem mentioned above. On the one hand the inverse problem is solved by application of fast weld thermal models which are closed form solutions of the heat conduction equation. In addition, a global optimization algorithm allows an automated calibration of the weld thermal model. This technique is able to provide a temperature field automatically that fits the experimental one with high accuracy within minutes on ordinary office computers. This fast paradigm permits confirming the application of welding simulation in an industrial environment as automotive industry. On the other hand, the initial model weakness is compensated by calibrating the model against multiple experiments. The unknown relationship between model and process parameters is approximated by a neural network. The validity of the model is increased successively and enables to decrease experimental effort, For a test case, it is shown that this approach yields accurate temperature fields within very short amount of time for unknown process parameters as input data to the model contributing to the requirement to construct a substitute system of the real welding process. KW - Heat flow KW - Neural networks KW - Simulating KW - Temperature KW - Welding PY - 2011 SN - 0043-2288 SN - 1878-6669 VL - 55 IS - 09-10 SP - 83 EP - 90 PB - Springer CY - Oxford AN - OPUS4-24603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Grain structure in aluminium TIG welds JF - Welding and cutting N2 - The microstructure of a fusion weld has great influences on the susceptibility of the base material to hot cracking and on the mechanical properties of the weld. Small, globulitic grains are necessary for increased strength, ductility and toughness and for a low inclination to hot cracking instead of large, oblong grains. This study reports on the factors which exert the main influences on such grain refinement in the weld. Thus, the influences of the thermal conditions, the chemical composition of the weld metal and the number and type of solidification nuclei on the microstructure were classified for the TIG welding of three different aluminium alloys. PY - 2014 SN - 1612-3433 VL - 13 IS - 3 SP - 177 EP - 181 PB - DVS - German Welding Society CY - Düsseldorf AN - OPUS4-30806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Häcker, Ralf A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Influence of grain size on mechanical properties of aluminium GTA weld metal JF - Welding in the world N2 - Grain refinement is an important possibility to enhance the mechanical properties such as strength, ductility and toughness of aluminium weld metal. In this study, grain refinement was achieved through the addition of commercial grain refiner Al Ti5B1 to gas tungsten arc weld metal of the aluminium alloys 1050A (Al 99.5) and 5083 (Al Mg4.5Mn0.7). The grain refiner additions led to a significant reduction of the weld metal mean grain size (Alloy 1050A, 86 %; Alloy 5083, 44 %) with a change in grain shape from columnar to equiaxed. Tensile tests showed for Alloy 5083 that the weld metal's ductility can be increased through grain refinement. No improvement in weld metal strength (i.e. yield strength and ultimate tensile strength) was observed. Furthermore, tear tests with notched specimens revealed that the resistance against initiation and propagation of cracks in the weld metal can be enhanced through grain refinement. The toughness was observed to increase clearly by grain refinement in weld metal of commercial pure Al (Alloy 1050A). In Alloy 5083 weld metal, the toughness was not improved through grain refinement, likely because of a semi-continuous network of brittle intermetallic phases that facilitate crack propagation. KW - GTA welding KW - Aluminium KW - Grain size KW - Tensile tests KW - Dynamic fracture tests PY - 2013 DO - https://doi.org/10.1007/s40194-013-0026-6 SN - 0043-2288 SN - 1878-6669 VL - 57 IS - 3 SP - 293 EP - 304 PB - Springer CY - Oxford AN - OPUS4-28065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neubert, S. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Influence of non-uniform martensitic transformation on residual stresses and distortion of GMA-welding JF - Journal of Constructional Steel Research N2 - A combined experimental and numerical approach is applied for a numerical analysis of the non-uniform martensitic transformation kinetic on welding residual stresses and distortion of a single pass weld. The (γ → α)-transformation kinetic within the weld pool region is governed by a non-uniform distribution of the elements chromium and nickel. The single-pass weld was performed by use of the low-alloyed high-strength steel S960QL with the high-alloyed high-strength filler wire CN 13/4-IG®. A thermo-mechanical FE model of the welding process was experimentally validated against temperature field, solid phase distribution, transformation behaviour, X-Ray stress measurements and transient optical distortion measurements. The experimentally determined and calculated weld residual stresses and transient distortion are in good agreement. It can be shown that the change on the (γ → α)-transformation kinetic driven by the inhomogeneous distribution of the chemical contents causes a strong influence on the weld residual stresses within the volume of the weld pool, which could promote crack propagation within the solidified weld pool by use of high-alloyed filler materials. Furthermore, a significant influence on the development of the transient welding distortion is visible. This influence should be respected during numerically calculation of welding distortion in case of multi-pass welding using interpass temperatures and high-alloyed filler materials. KW - Welding residual stresses KW - FEA KW - Welding simulation KW - Dissimilar welding KW - Transformable steels PY - 2017 DO - https://doi.org/10.1016/j.jcsr.2016.08.020 SN - 0143-974X SN - 1873-5983 VL - 128 SP - 193 EP - 200 PB - Elsevier Ltd. AN - OPUS4-37276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Influence of solute content and solidification parameters on grain refinement of aluminum weld metal JF - Metallurgical and materials transactions A N2 - Grain refinement provides an important possibility to enhance the mechanical properties (e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape (CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size. KW - Aluminium KW - GTA welding KW - Grain refinement KW - Alloy 1050A KW - Alloy 5083 KW - Alloy 6082 KW - Al Ti5B1 PY - 2013 DO - https://doi.org/10.1007/s11661-013-1649-3 SN - 1073-5623 SN - 1543-1940 VL - 44A IS - 7 SP - 3198 EP - 3210 PB - The Minerals, Metals and Materials Society CY - Warrendale AN - OPUS4-28656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds JF - Journal of Nondestructive Evaluation N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 DO - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Life Cycle Assessment of Fusion Welding Processes - A Case Study of Resistance Spot Welding Versus Laser Beam Welding JF - Advanced Engineering Materials N2 - The high amount of resource consumption of fusion welding processes offers the potential to reduce their environmental impact. While the driving forces are known froma qualitative perspective, the quantitative assessment of the crucial parameters is not a trivial task. Therefore, herein, a welding-specific methodology to utilize life cycle assessment as a tool for evaluating the environmental impact of fusion welding processes is presented. In this context, two welding processes, resistance spot welding and laser beam welding, are analyzed for two different use cases. These comprise the welding of shear test specimens and a cap profile made of electrogalvanized sheets of DC 05þ ZE (1.0312) as representative of an automotive application. For both welding processes, the main influences on the resulting environmental impact categories are evaluated and compared. The requirements for ecological efficient welding processes are discussed and implemented. KW - Resistance spot welding KW - Carbon dioxide footprint KW - Environmental impact categories KW - Laser beam welding KW - Life cycle assessment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566458 DO - https://doi.org/10.1002/adem.202101343 SN - 1438-1656 VL - 24 IS - 6 SP - 1 EP - 14 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, Gunther A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Life cycle assessment of welding technologies for thick metal plate welds JF - Journal of cleaner production N2 - Life Cycle Assessment (LCA) is applied in evaluating environmental impacts of state-of-the-art welding technologies. Manual Metal Arc Welding (MMAW), Laser Arc-Hybrid Welding (LAHW) and two Gas Metal Arc Welding (GMAW) variants are used to join a plate of 20 mm thick structural steel. The LCA results indicate that for 1 m weld seam, MMAW causes the highest environmental impacts in global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), and photochemical ozone creation potential (POCP) among the selected processes, and the LAHW variant performances the least. Filler material and electricity consumptions generally dominate the impacts and reach shares of up to 80% and 61% in the respective impact categories. However, electrode coating consumption in MMAW remarkably contributes impacts on AP and EP, for instance 52% of AP and 76% of EP. Strategies for improvement of the applied welding technologies are discussed. KW - Life Cycle Assessment (LCA) KW - Arc welding KW - Laser arc-hybrid welding KW - Resource efficiency PY - 2015 DO - https://doi.org/10.1016/j.jclepro.2015.06.121 SN - 0959-6526 VL - 108 IS - Part: A SP - 46 EP - 53 PB - Elsevier Science CY - Amsterdam AN - OPUS4-34969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Pittner, Andreas A1 - Graf, B. A1 - Rethmeier, Michael T1 - Mechanical properties characterization of reisstance spot welded DP1000 steel under uniaxial tensile tests JF - Mechanical Testing N2 - Resistance spot welding (RSW) is widely used in the automotive industry as the main joining method. Generally, an automotive body contains around 2000 to 5000 spot welds. Therefore, it is of decisive importance to characterize the mechanical properties of these areas for the further optimization and improvement of an automotive body structure. The present paper aims to introduce a novel method to investigate the mechanical properties and microstructure of the resistance spot weldment of DP1000 sheet steel. In this method, the microstructure of RSW of two sheets was reproduced on one sheet and on a bigger area by changing of the welding parameters, e. g. welding current, welding time, electrode force and type. Then, tensile tests in combination with digital Image correlation (DIC) measurement were performed on the notched tensile specimens to determine the mechanical properties of the weld metal. The notch must be made on the welded tensile specimen to force the fracture and elongation on the weld metal, enabling the characterization of its properties. Additionally, the parameters of a nonlinear isotropic material model can be obtained and verified by the simulation of the tensile specimens. The parameters obtained show that the strength of DP1000 steel and the velocity of dislocations for reaching the Maximum value of strain hardening, are significantly increased after RSW. The effect of sample geometry and microstructural inhomogeneity of the welded joint on the constitutive property of the weld metal are presented and discussed. KW - Mechanical properties KW - resistance spot welding KW - dual phase steel KW - digital image correlation PY - 2019 VL - 61 IS - 6 SP - 527 EP - 532 PB - Carl Hanser Verlag CY - München AN - OPUS4-48296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, X. C. A1 - Wu, Chuan Song A1 - Rethmeier, Michael A1 - Pittner, Andreas T1 - Mechanical properties of 2024-T4 aluminium alloy joints in ultrasonic vibration enhanced friction stir welding JF - China Weldng N2 - Ultrasonic vibration enhanced friction stir welding (UVeFSW) is a recent modification of conventional friction stir welding (FSW), which transmits ultrasonic vibration directly into the localized area of the workpiece near and ahead of the rotating tool. In this study, a high strength aluminium alloy (2024-T4) was welded by this process and conventional FSW, respectively. Then tensile tests, microhardness tests and fracture surface analysis were performed successively on the welding samples. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints. The microhardness of the stir zone also increases. KW - Ultrasonic vibration KW - Friction stir welding KW - Mechanical properties PY - 2013 UR - https://www.researchgate.net/publication/286735810_Mechanical_properties_of_2024-T4_aluminium_alloy_joints_in_ultrasonic_vibration_enhanced_friction_stir_welding VL - 22 IS - 4 SP - 8 EP - 13 AN - OPUS4-40773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Weiß, D. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Methodology to improve applicability of welding simulation JF - Science and technology of welding and joining N2 - The objective of this paper is to demonstrate a new simulation technique which allows fast and automatic generation of temperature fields as input for subsequent thermomechanical welding simulation. The basic idea is to decompose the process model into an empirical part based on neural networks and a phenomenological part that describes the physical phenomena. The strength of this composite modelling approach is the automatic calibration of mathematical models against experimental data without the need for manual interference by an experienced user. As an example for typical applications in laser beam and GMA-laser hybrid welding, it is shown that even 3D heat conduction models of a low complexity can approximate measured temperature fields with a sufficient accuracy. In general, any derivation of model fitting parameters from the real process adds uncertainties to the simulation independent of the complexity of the underlying phenomenological model. The modelling technique presented hybridises empirical and phenomenological models. It reduces the model uncertainties by exploiting additional information which keeps normally hidden in the data measured when the model calibration is performed against few experimental data sets. In contrast, here the optimal model parameter set corresponding to a given process parameter is computed by means of an empirical submodel based on relatively large set of experimental data. The approach allows making a contribution to an efficient compensation of modelling inaccuracies and lack of knowledge about thermophysical material properties or boundary conditions. Two illustrating examples are provided. KW - Welding simulation KW - GMA-laser hybrid welding KW - Laser beam welding KW - Neural networks KW - Global optimisation KW - Stochastic search method KW - Inverse heat conduction problem KW - Model prediction PY - 2008 DO - https://doi.org/10.1179/136217108X329322 SN - 1362-1718 SN - 1743-2936 VL - 13 IS - 6 SP - 496 EP - 508 PB - Maney CY - London AN - OPUS4-18300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Michael, Thomas A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Microcrack formation during gas metal arc welding of high-strength fine-grained structural steel JF - Acta metallurgica Sinica - English letters - sponsored by the Chinese Society of Metals N2 - The recent development of high-performance-modified spray arc processes in gas metal arc welding due to modern digital control technology and inverter power sources enables a focused spray arc, which results in higher penetration depths and welding speed. However, microcracks occurred in the weld metal while approaching the process limits of the modified spray arc, represented by a 20-mm double layer DV-groove butt-weld. These cracks were detected in structural steel exhibiting a yield strength level of up to 960 MPa and are neither dependent on the used weld power source nor a consequence of the modified spray arc process itself. The metallographic and fractographic investigations of the rather exceptional fracture surface lead to the classification of the microcracks as hot cracks. The effects of certain welding parameters on the crack probability are clarified using a statistical design of experiment. However, these microcracks do not impact the design specification for toughness in the Charpy V-notch test (absorbed energy at -40 °C for the present material is 30 J). KW - High-strength low-alloy steel KW - Welding KW - Fracture KW - Design of experiments KW - Microcracking PY - 2014 DO - https://doi.org/10.1007/s40195-013-0011-5 SN - 1006-7191 SN - 1000-9442 VL - 27 IS - 1 SP - 140 EP - 148 PB - Springer CY - Shenyang AN - OPUS4-30123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Syed, A.A. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - De, A. T1 - Modeling of gas metal arc welding process using an analytically determined volumetric heat source JF - ISIJ international N2 - High peak temperature and continuous deposition of electrode droplets in the weld puddle inhibit real-time monitoring of thermal cycles and bead dimensions in gas metal arc welding. A three-dimensional numerical heat transfer model is presented here to compute temperature field and bead dimensions considering a volumetric heat source to account for the transfer of arc energy into the weld pool. The heat source dimensions are analytically estimated as function of welding conditions and original joint geometry. The deposition of electrode material is modeled using deactivation and activation of discrete elements in a presumed V-groove joint geometry. The computed values of bead dimensions and thermal cycles are validated with the corresponding measured results. A comparison of the analytically estimated heat source dimensions and the corresponding numerically computed bead dimensions indicate that the former could rightly serve as the basis for conduction heat transfer based models of gas metal arc welding process. KW - Gas metal arc welding KW - Heat conduction KW - Volumetric heat source KW - Experimental validation PY - 2013 DO - https://doi.org/10.2355/isijinternational.53.698 SN - 0915-1559 SN - 1347-5460 VL - 53 IS - 4 SP - 698 EP - 703 PB - ISIJ AN - OPUS4-28074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neubert, Sebastian A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Numerical sensitivity analysis of TRIP-parameter K on weld residual stresses for steel S355J2+ N JF - Journal of Thermal Stresses N2 - A combined experimental numerical approach is applied for sensitivity analysis of the transformation induced plasticity (TRIP)-parameter K on weld residual stresses for welding of structural steel of grade S355J2+N. K was determined experimentally using the Gleeble 3500 facility. A thermomechanical FE model of the real welding process was experimentally validated against temperature field and X-ray stress measurements. Within sensitivity analyses K was varied by several orders of magnitude and the influence on the calculated residual stresses is evaluated by performing corresponding FEA. The correct order of magnitude is sufficient to reproduce the residual stresses qualitatively and quantitatively. KW - TRIP - transformation induced plasticity KW - welding residual stresses KW - sensitivity analysis KW - FEA PY - 2016 DO - https://doi.org/10.1080/01495739.2015.1124641 SN - 0149-5739 VL - 2016 IS - 39/2 SP - 201 EP - 219 PB - Journal of Thermal Stresses AN - OPUS4-35880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Hirthammer, Volker A1 - Rethmeier, Michael T1 - Recommendations for an Open Science approach to welding process research data JF - Welding in the World N2 - The increasing adoption of Open Science principles has been a prevalent topic in the welding science community over the last years. Providing access to welding knowledge in the form of complex and complete datasets in addition to peer-reviewed publications can be identified as an important step to promote knowledge exchange and cooperation. There exist previous efforts on building data models specifically for fusion welding applications; however, a common agreed upon implementation that is used by the community is still lacking. One proven approach in other domains has been the use of an openly accessible and agreed upon file and data format used for archiving and sharing domain knowledge in the form of experimental data. Going into a similar direction, the welding community faces particular practical, technical, and also ideological challenges that are discussed in this paper. Collaboratively building upon previous work with modern tools and platforms, the authors motivate, propose, and outline the use of a common file format specifically tailored to the needs of the welding research community as a complement to other already established Open Science practices. Successfully establishing a culture of openly accessible research data has the potential to significantly stimulate progress in welding research. KW - Welding KW - Research data management KW - Open science KW - Digitalization KW - Weldx KW - Open source PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529332 DO - https://doi.org/10.1007/s40194-021-01151-x SN - 1878-6669 SN - 0043-2288 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-52933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Karkhin, Victor A1 - Rethmeier, Michael T1 - Reconstruction of 3D transient temperature field for fusion welding processes on basis of discrete experimental data JF - Welding in the world N2 - This paper presents an approach to reconstruct the three-dimensional transient temperature field for fusion welding processes as input data for computational weld mechanics. The methodology to solve this inverse heat conduction problem fast and automatically focuses on analytical temperature field models for volumetric heat sources and application of global optimisation. The important issue addressed here is the question which experimental data is needed to guarantee a unique reconstruction of the experimental temperature field. Different computational-experimental test cases are executed to determine the influence of various sets of discrete experimental data on the solvability of the optimisation problem. The application of energy distributions utilised for laser beam welding allows reconstructing the temperature field efficiently. Furthermore, the heat input into the workpiece determined by the simulation contributes to the evaluation of the thermal efficiency of the welding process. KW - Welding KW - Temperature KW - Analysis techniques KW - Optimisation KW - Laser beams KW - Hybrid laser arc welding PY - 2015 DO - https://doi.org/10.1007/s40194-015-0225-4 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 4 SP - 497 EP - 512 PB - Springer CY - Oxford AN - OPUS4-33730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Lyamkin, V. A1 - Bruno, Giovanni A1 - Pittner, Andreas A1 - Wimpory, Robert A1 - Boin, M. A1 - Kreutzbruck, Marc T1 - Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings JF - Journal of Magnetism and Magnetic Materials N2 - The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction(ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. KW - GMR KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - TIG-welding PY - 2017 DO - https://doi.org/10.1016/j.jmmm.2016.11.102 SN - 0304-8853 SN - 1873-4766 VL - 426 SP - 580 EP - 587 PB - Elsevier CY - Amsterdam AN - OPUS4-38678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karkhin, Victor A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Simulation of inverse heat conduction problems in fusion welding with extended analytical heat source models JF - Frontiers of materials science N2 - The paper presents bounded volume heat sources and the corresponding functional-analytical expressions for the temperature field. The power density distributions considered here are normal, exponential and parabolic. The sources model real heat sources like the welding arc, laser beam, electron beam, etc., the convection in the weld pool as well as the latent heat due to fusion and solidification. The parameters of the heat source models are unknown a priori and have to be evaluated by solving an inverse heat conduction problem. The functional-analytical technique for calculating 3D temperature fields in butt welding is developed. The proposed technique makes it possible to reduce considerably the total time for data input and solution. It is demonstrated with an example of laser beam welding of steel plates. KW - Laser beam welding KW - Volume heat source KW - Functional-analytical solution KW - Inverse modelling PY - 2011 DO - https://doi.org/10.1007/s11706-011-0137-1 SN - 2095-025X SN - 2095-0268 VL - 5 IS - 2 SP - 119 EP - 125 PB - Springer CY - Secaucus, N.J. AN - OPUS4-24164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Su, H. A1 - Wu, Chuan Song A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding JF - Journal of Manufacturing Processes N2 - Simultaneous measurement of the tool torque, traverse force and axial force during friction stir welding process is of great significance to the understanding of the underlying process mechanism and the optimizing of the process parameters. Different from the traditional measurement methods using load cell or rotating component dynamometer, an indirect but economical methodology is used in this study for the simultaneous measurement of the traverse force, axial force and tool torque by monitoring the output torques of the servo motors and main spindle three-phase AC induction motor inside the FSW machine. The values of the traverse force, axial force and tool torque are determined under different welding conditions, and the influencing factors are examined. The measured results in friction stir welding of AA2024-T4 aluminum alloys at different combinations of tool rotation speed and welding speed lay foundation for process optimization. KW - Friction stir welding KW - Measurement KW - Traverse force KW - Axial force KW - Tool torque PY - 2013 DO - https://doi.org/10.1016/j.jmapro.2013.09.001 SN - 0278-6125 SN - 1526-6125 VL - 15 IS - 4 SP - 495 EP - 500 PB - Elsevier Ltd. CY - Dearborn, Mich., USA AN - OPUS4-29688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Solidification of GTA aluminium weld metal: Part 2 - Thermal conditions and model for columnar-to-equiaxed transition JF - Welding journal KW - Aluminium KW - Gas tungsten arc welding (GTAW) KW - Columnar to equiaxed transition (CET) KW - Thermal analysis PY - 2014 SN - 0043-2296 SN - 0096-7629 VL - 93 IS - March SP - 69-s - 77-s PB - American Welding Society CY - New York, NY AN - OPUS4-30415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Oder, Gabriele A1 - Neumann, R.S. A1 - Rooch, Heidemarie A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Rethmeier, Michael T1 - Solidification of GTA aluminium weld metal: Part I - Grain morphology dependent upon alloy composition and grain refiner content JF - Welding journal KW - Aluminium KW - Gas tungsten arc welding (GTAW) KW - Grain refinement KW - Columnar to equiaxed transition (CET) KW - Epitaxial nucleation KW - Duplex nucleation theory PY - 2014 SN - 0043-2296 SN - 0096-7629 VL - 93 SP - 53-s - 59-s PB - American Welding Society CY - New York, NY AN - OPUS4-30413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neubert, S. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL JF - Mechanical Testing N2 - In order to generate a material data base for computational welding mechanics, temperature and strain-rate dependent stress-strain experiments were performed by using a Gleeble®3500 testing system. The object of the investigation was HSLA transformable steel S960QL and related solid phases as bainite, martensite and austenite. For the production of these solid phases, the base material was heat treated according to an average weld temperature cycle which was extracted within the heat affected zone of a thermal numerical weld simulation of a GMA weld. The hot tensile tests were carried out via cost-saving flat specimen geometries. Two experimental series with different strain-rates were conducted, where the longitudinal strain-rate was controlled by specification of the transversal strain-rate applying Poisson’s-ratio. Subsequently, the resulting stress-strain curves were approximated in accordance with the Ramberg-Osgood-materials law. Consequently, it is shown that the temperature and strain-rate dependent stress-strain behavior of metals can be successfully characterized by means of a Gleeble®-system. However, this requires a control of the longitudinal strain-rate by specification of the transversal strain-rate. The related experimental procedure and the method of evaluation are explained in detail. With regard to all tested solid phases, a significant strain-rate dependency can only be observed upwards from temperatures of 400 °C. Based on experimental results, Ramberg-Osgood-parameters will be presented to describe the stress-strain behavior of steel S960QL and related solid phases for temperatures between 25 °C and 1200 °C. Furthermore, the use of costsaving flat specimen-geometry appears reasonable. N2 - Für die Generierung einer Materialdatenbank zur Schweißstruktursimulation wurden temperatur- und dehnratenabhängige Spannungs-Dehnungsexperimente unter Einsatz einer Gleeble® 3500-Anlage durchgeführt. Als Untersuchungsgegenstand diente der hochfeste niedriglegierte Feinkornbaustahl S960QL und seine zugehörigen Festphasen Bainit, Martensit und Austenit. Zur Herstellung dieser Festphasen wurde der Grundwerkstoff Wärmebehandlungen ausgesetzt, welche die charakteristischen Merkmale eines durchschnittlichen Schweißzeittemperaturzyklus aufweisen. Dieser Temperaturzyklus wurde aus der Wärmeeinflusszone eines numerisch nachgebildeten Temperaturfeldes einer MAG-Schweißverbindung extrahiert. Die Zugversuche wurden an einer kostengünstig herzustellenden Flachprobengeometrie durchgeführt, wobei zwei Experimentalreihen mit jeweils unterschiedlichen Dehnraten realisiert wurden. Die resultierenden Spannungs-Dehnungskurven wurden durch die Ramberg-Osgood-Beziehung approximiert. Es konnte gezeigt werden, dass das temperatur- und dehnratenabhängige Spannungs-Dehnungsverhalten von Metallen durch die Anwendung eines Gleeble®-Systems erfolgreich charakterisiert werden kann. Die Einstellung der Längsdehnrate muss dabei durch die Kontrolle der Querdehnrate unter Berücksichtigung des Poisson-Verhältnisses erfolgen. Die experimentellen Prozeduren und die zugehörigen Auswertemethodiken wurden detailliert erläutert. Für alle getesteten Festphasen wurde ein signifikanter Dehnrateneinfluss erst für Temperaturen ab 400 °C aufwärts beobachtet. Die anhand der Messergebnisse abgeleiteten Ramberg-Osgood-Parameter zur Beschreibung des Verfestigungsverhaltens für den Temperaturbereich zwischen 25 °C und 1200 °C werden vollständig präsentiert. KW - Stress-strain behavior KW - Gleeble testing KW - HSLA KW - Strain-rate KW - Numerical welding simulation KW - Transformable steels PY - 2018 DO - https://doi.org/10.3139/120.111208 SN - 0025-5300 VL - 60 IS - 7-8 SP - 733 EP - 748 PB - Carl Hanser CY - München AN - OPUS4-45791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Su, H. A1 - Wu, Chuan Song A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Thermal energy generation and distribution in friction stir welding of aluminum alloys JF - Energy N2 - The accurate prediction of the thermal energy generation and distribution in friction stir welding process is of great significance for the optimization of the process parameters and the understanding of the underlying mechanisms. In this study, a new method of integrative calculation and measurement is proposed to obtain the more reasonable values of the frictional coefficient and the slip rate, which are both used to characterize the heat generation rate at the tool-workpiece contact interfaces. A three-dimensional model is established to fully couple the energy generation, heat transfer and material flow in friction stir welding of aluminum alloys. The energy produced by both interfacial friction and plastic deformation are taken into consideration. The analysis accuracy of the thermal energy generation and distribution is improved, and the distribution features of thermal energy density in the vicinity of the tool are elucidated. The predicted peak temperature values at some locations are in agreement with the experimentally measured ones. KW - Thermal energy generation KW - Energy density distribution KW - Heat transfer KW - Material flow KW - Friction stir welding PY - 2014 DO - https://doi.org/10.1016/j.energy.2014.09.045 SN - 0360-5442 VL - 77 SP - 720 EP - 731 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-32076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing with novel Al-Mg-Si filler wire - Assessment of weld quality and mechanical properties JF - Metals N2 - Wire arc additive manufacturing enables the production of near-net shape large-volume metallic components leveraging an established industrial base of welding and cladding technology and adapting it for layer-wise material deposition. However, the complex relationship between the process parameters and resulting mechanical properties of the components still remains challenging. In case of high-strength Al-Mg-Si aluminum alloys, no commercial filler wires are yet available due the high susceptibility of solidification cracking as well as the necessary efforts to obtain acceptable mechanical properties. To address this need, we evaluated a novel filler wire based on AlMg0.7Si doped with a Ti5B1 master alloy to foster fine equiaxed grains within the deposited metal. The correlation between the process parameters and component quality was examined by analyzing the size and distribution of pores as well as the grain morphology. Furthermore, we evaluated the influence of different post-weld heat treatment strategies to achieve mechanical properties corresponding to the reference wrought material. We demonstrated that fine equiaxed grains in the weld metal reduced the susceptibility of solidification cracking significantly. The novel AlMg0.7Si-TiB (S Al 6063-TiB) filler wire facilitated wire arc additive manufacturing of high-strength aluminum components with mechanical properties that were almost as superior as the corresponding wrought base material. KW - Wire arc additive manufacturing KW - Precipitation hardening aluminum alloys KW - AlMg0.7SiTiB filler wire KW - Grain refinement KW - Mechanical properties PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538327 DO - https://doi.org/10.3390/met11081243 SN - 2075-4701 VL - 11 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-53832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -