TY - JOUR A1 - Syed, A.A. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - De, A. T1 - Modeling of gas metal arc welding process using an analytically determined volumetric heat source JF - ISIJ international N2 - High peak temperature and continuous deposition of electrode droplets in the weld puddle inhibit real-time monitoring of thermal cycles and bead dimensions in gas metal arc welding. A three-dimensional numerical heat transfer model is presented here to compute temperature field and bead dimensions considering a volumetric heat source to account for the transfer of arc energy into the weld pool. The heat source dimensions are analytically estimated as function of welding conditions and original joint geometry. The deposition of electrode material is modeled using deactivation and activation of discrete elements in a presumed V-groove joint geometry. The computed values of bead dimensions and thermal cycles are validated with the corresponding measured results. A comparison of the analytically estimated heat source dimensions and the corresponding numerically computed bead dimensions indicate that the former could rightly serve as the basis for conduction heat transfer based models of gas metal arc welding process. KW - Gas metal arc welding KW - Heat conduction KW - Volumetric heat source KW - Experimental validation PY - 2013 DO - https://doi.org/10.2355/isijinternational.53.698 SN - 0915-1559 SN - 1347-5460 VL - 53 IS - 4 SP - 698 EP - 703 PB - ISIJ AN - OPUS4-28074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Babu, S. S. T1 - Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses JF - Computational materials science N2 - Austenite grain growth during welding is a critical factor for controlling weld microstructure in addition to nominal composition and thermal cycles. Recently, experimental data suggesting a decrease in martensite start temperature with a decrease in prior austenite grain size has been published. However, the actual sensitivity of this phenomenon on residual stresses evolution in the heat-affected zone has not been investigated, yet. Therefore, a numerical model was modified to consider this phenomenon. Numerical simulations were performed for welding of a low-alloy structural steel with minimum yield strength of 355 MPa (S355J2+N) and a heat-resistant steel P91 or 9Cr–1Mo, respectively. The results clarify the influence of prior austenite grain size on the residual stress development and show the importance martensite transformation temperatures and final martensite fraction. Consequently, the residual stress evolution of P91, which completely transforms to martensite while cooling, based on the enhanced model leads to maximum stress differences of 200 MPa in the heat-affected zone. KW - Prior austenite grain size KW - Martensite start temperature KW - Welding-induced residual stress KW - Numerical simulation KW - Gas metal arc welding PY - 2013 DO - https://doi.org/10.1016/j.commatsci.2012.11.058 SN - 0927-0256 VL - 69 SP - 251 EP - 260 PB - Elsevier CY - Amsterdam AN - OPUS4-27633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -