TY - THES A1 - Pittner, Andreas T1 - A Contribution to the Solution of the Inverse Heat Conduction Problem in Welding Simulation N2 - The present thesis provides a contribution to the solution of the inverse heat conduction problem in welding simulation. The solution strategy is governed by the need that the phenomenological simulation model utilised for the direct solution has to provide calculation results within short computational time. This is a fundamental criterion in order to apply optimisation algorithms for the detection of optimal model parameter sets. The direct simulation model focuses on the application of functional-analytical methods for solving the corresponding partial differential equation of heat conduction. In particular, volume heat sources with a bounding of the domain of action are applied. Besides the known normal and exponential distribution, the models are extended by the introduction of parabolically distributed heat sources. Furthermore, the movement on finite specimens under consideration of curved trajectories has been introduced and solved analytically. The calibration of heat source models against experimental reference data involves the simultaneous adaptation of model parameters. Here, the global parameter space is searched in a randomised manner. However, an optimisation pre-processing is needed to get information about the sensitivity of the weld characteristics like weld pool dimension or objective function due to a change of the model parameters. Because of their low computational cost functional-analytical models are well suited to allow extensive sensitivity studies which is demonstrated in this thesis. For real welding experiments the applicability of the simulation framework to reconstruct the temperature field is shown. In addition, computational experiments are performed that allow to evaluate which experimental reference data is needed to represent the temperature field uniquely. Moreover, the influence of the reference data like fusion line in the cross section or temperature measurements are examined concerning the response behaviour of the objective function and the uniqueness of the optimisation problem. The efficient solution of the inverse problem requires two aspects, namely fast solutions of the direct problem but also a reasonable number of degrees of freedom of the optimization problem. Hence, a method was developed that allows the direct derivation of the energy distribution by means of the fusion line in the cross section, which allows reducing the dimension of the optimisation problem significantly. All conclusions regarding the sensitivity studies and optimisation behaviour are also valid for numerical models for which reason the investigations can be treated as generic. T3 - BAM Dissertationsreihe - 85 KW - Analytical Solution KW - Global Optimisation KW - Neural Networks KW - Welding KW - Temperature Field PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-733 SN - 978-3-9815134-9-1 SN - 1613-4249 VL - 85 SP - 1 EP - 213 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-73 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pittner, Andreas A1 - Weiss, D. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - A methodology for the fast temperature field generation for welding simulation T2 - 17th International Conference "Computer Technology in Welding and Manufacturing" CY - Cranfield, UK DA - 2008-06-18 KW - Welding simulation KW - Temperature field generation KW - Short calculation time KW - Multiple experiments KW - Inverse heat conduction problem KW - Neural networks PY - 2008 SN - 978-1-903761-07-6 SP - 1 EP - 12 PB - TWI CY - Cambridge AN - OPUS4-18290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Weiß, D. ED - Hirata, Yoshinori ED - Manabu Tanaka, T1 - Automated generation of temperature fields for numerical welding simulation T2 - 8th International Welding Symposium - Innovations in Welding and Joining for a New Era in Manufacturing CY - Kyoto, Japan DA - 2008-11-16 KW - Welding simulation KW - Temperature Field Generation KW - Optimization KW - Neural Networks PY - 2008 SP - 158 PB - Japan Welding Society CY - Kyoto AN - OPUS4-18614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Weiß, D. A1 - Rethmeier, Michael T1 - Application of a combined modelling technique to reduce experimental effort - a case study for laser-GMA-hybrid welding T2 - VI. International conference "Beam technologies & laser application" CY - Saint Petersburg, Russia DA - 2009-09-23 PY - 2009 SP - 97 EP - 102 CY - Saint Petersburg, Russia AN - OPUS4-20882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas T1 - Methodology for the fast temperature field generation for welding simulation T2 - 17th International Conference, "Computer Technology in Welding and Manufacturing" CY - Cranfield, England DA - 2008-06-18 PY - 2008 AN - OPUS4-20848 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas T1 - Fast Generation and Prediction of Welding Temperature Fields for Multiple Experiments T2 - The Fourth International Conference "Mathematical Modelling and Information, Technologies in Welding and Related Processes", vil. Katsively CY - Crimea, Ukraine DA - 2008-05-27 PY - 2008 AN - OPUS4-20849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas T1 - An efficient solution of the inverse heat conduction problem for welding simulation T2 - 9th International Seminar "Numercial Analysis of Weldability" CY - Seggauberg, Austria DA - 2009-09-28 PY - 2009 AN - OPUS4-20850 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas T1 - Application of a combined modelling technique to reduce experimental effort-a case study for Laser-GMA-Hybrid Welding T2 - Beam Technologies & Laser Application, VI International Conference CY - Saint Petersburg, Russia DA - 2009-09-23 PY - 2009 AN - OPUS4-20851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas T1 - Fast Temperature Field Generation for Welding Simulation and Reduction of Experimental Effort T2 - IIW SC Auto, 62nd IIW Annual Assembly CY - Singapore DA - 2009-07-12 PY - 2009 AN - OPUS4-22362 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Weiss, D. A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - V.I. Makhnenko, T1 - Fast generation and prediction of welding temperature fields for multiple experiments N2 - The objective of this paper is to demonstrate a new simulation technique which allows the fast and automatic generation to temperature fields based on a combination of empirical and phenomenological modelling techniques. The automatic calibration of the phenomenological model is performed by a multi-variable global optimisation routine which yields the optimal fit between simulated and experimental weld charcteristics without the need for initial model parameters. For exemplary welding processes it is shown that linear 3D heat conduction models can approximate measured temperature fields with a high accuracy. The modelling approach presented comprises the automatic calibration against multiple experiments which permits simulating the temperature field for unknown process parameters. The validation of this composite simulation model is performed for exemplary welding processes and includes the prediction of the fusion line in the cross section and the corresponding thermal cycles. T2 - 4th International Conference - Mathematical modelling and information technologies in welding and related processes CY - Katsiveli, Crimea, Ukraine DA - 2008-05-27 KW - Welding simulation KW - GMA-laser hybrid welding KW - Laser beam welding KW - Neural networks KW - Global optimisation KW - Stochastic search method KW - Inverse heat conduction problem KW - Model prediction PY - 2008 SP - 134 EP - 140 CY - Kiev, Ukraine AN - OPUS4-19639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -