TY - JOUR A1 - Pimentel, A. S. O. A1 - Guesser, W. L. A1 - Custódio da Silva, W. J. R. A1 - Portella, Pedro Dolabella A1 - Woydt, Mathias A1 - Burbank, J. T1 - Abrasive wear behavior of austempered ductile iron with niobium additions N2 - Carbidic Austempered Ductile Iron (CADI) microstructures containing eutectic carbides can be produced by the addition of carbide stabilizing elements, such as chromium. Carbides formed from the addition of Cr are eutectic of M3C type. The presence of such hard phases can enhance the abrasion wear resistance of ductile iron. A new CADI can be produced by the addition of Nb. Niobium carbide particles are formed in the beginning of solidification and remain stable once they are insoluble in solid iron matrix. The dry sand abrasive wear resistance of ductile irons alloyed with 1.0, 1.8, and 2.4 wt% Nb were tested in both “as-cast” and “heat treated” conditions using standard ASTM G65. Results were compared to abrasive wear data obtained on ductile iron alloyed with 1 wt% Cr, CADI (1 wt% Cr), and the basic composition of iron without carbide stabilizing elements. In the “ascast” condition, the addition of Nb did not lead to a reduction in wear, while CADI with Nb is a promising substitute for CADI with Cr addition, because both materials showed very similar values of abrasion resistance. Micro-ploughing and micro-cutting mechanisms were observed on the worn surfaces of ductile irons. Abrasive wear resistance of these alloys was correlated with the volume fraction of carbides. KW - arbidic austempered ductile iron KW - Ductile iron KW - Niobium alloying KW - Abrasion PY - 2019 U6 - https://doi.org/10.1016/j.wear.2019.203065 VL - 2019 IS - 440–441 SP - 203065 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-50784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pimentel, A. S. O. A1 - Guesser, W. L. A1 - Portella, Pedro Dolabella A1 - Woydt, Mathias A1 - Burbank, J. T1 - Slip-rolling behavior of ductile and austempered ductile iron containing niobium or chromium N2 - The use of high niobium alloyed cast iron alloys is a relatively new approach in which the niobium addition intends to improve the properties of the material by the precipitation of hard niobium carbides during solidification. Steels can be replaced by ductile cast iron in some rolling applications, such as gears and cams, in order to reduce material costs. The aim of this work is to evaluate ductile iron alloyed with 1 weight percent (wt.%) niobium for the as cast specimens and with 1.8 wt.% and 2.4 wt.% niobium for the austempered specimens under lubricated slip-rolling tests using mixed/boundary conditions in an Amsler-type machine. Austempered ductile iron (ADI) alloyed with 1 wt.% chromium, or Carbidic ADI, was tested for comparison. For the as cast conditions, the niobium addition resulted in an increase of wear resistance owing to the low contact pressure of these tests. However, for the austempered specimens, the best performance was found for unalloyed ADI. The main factor acting in the initiation and propagation of cracks in ductile iron is the presence of the graphite nodules. The coarse carbides also contributed to the initiation of cracks and spalling of the material. KW - Ductile iron KW - Niobium alloying KW - Slip-rolling KW - Carbidic austempered ductile iron PY - 2019 U6 - https://doi.org/10.1520/MPC20180188 SN - 2165-3992 SN - 2379-1365 VL - 8 IS - 1 SP - 402 EP - 418 PB - ASTM International CY - West Conshohocken, Pa. AN - OPUS4-51209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -