TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Wiegand, Reiner A1 - Kranzmann, Axel A1 - Bork, Claus-Peter T1 - Corrosion fatigue behavior and S-N-curve of X46Cr13 exposed to CCS-environment obtained from laboratory in-situ-experiments JF - Energy Procedia N2 - In corrosive environments such as CCS bore holes or geothermal power plants the materials loaded cyclically are also exposed constantly to the highly corrosive hot thermal water. The lifetime reduction of (X46Cr13, AISI 420C) is demonstrated in in-situ-laboratory experiments (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 Nl/h, CO2). S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue is most likely failure cause. KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2013 DO - https://doi.org/10.1016/j.egypro.2013.06.499 SN - 1876-6102 VL - 37 SP - 5764 EP - 5772 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-29342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Schulze, Thomas ED - Knaut, M. T1 - Werkstoffcharakterisierung für Implantattechnologie in in-situ Ermüdungsversuchen T2 - Beiträge & Positionen der HTW Berlin: Gesundheit - Vielfätige Lösungen aus Technik und Wirtschaft KW - Werkstoffcharakterisierung KW - Schwingungskorrosion PY - 2014 SN - 978-3-8305-3368-9 SP - 160 EP - 165 PB - BWV - Berliner Wissenschafts-Verlag CY - Berlin AN - OPUS4-31208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Corrosion and corrosion fatigue of steels in downhole CCS environment - A summary JF - Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO₃ and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO₂: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - Carbon capture and storage PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531391 DO - https://doi.org/10.3390/pr9040594 SN - 2227-9717 VL - 9 IS - 4 SP - 1 EP - 33 PB - MDPI CY - Basel AN - OPUS4-53139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Evaluating corrosion and corrosion fatigue behavior via laboratory testing techniques in highly corrosive CCS-environment T2 - Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021 N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO₂). T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2021 DO - https://doi.org/10.2139/ssrn.3812193 SP - 1 EP - 11 PB - SSRN CY - Rochester, NY AN - OPUS4-53142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Gröber, Andre A1 - Böllinghaus, Thomas A1 - Kranzmann, Axel T1 - Corrosion fatigue of 1.4542 exposed to a laboratory saline aquifer water CCS-environment T2 - Energy Procedia N2 - X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ∼ 30 Hz). Due to the rather heterogeneous fine machined surfaces (Rz=4) the specimens are comparable with prefabricated parts. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa and lies 60% below the stress amplitude measured in air. The scatter range TN = 1:34 is disproportionately large. Although the fracture surface exhibited the typical striations and corroded surface areas no significant differences were found. The hardness was found to be homogeneous in all specimens tested at 335 HV10. Non-metallic inclusions were found within the microstructure, but no correlation could be found between the inclusions and early rupture. Still specimens that showed inclusions at the fracture surface and its cross section endured lower number of cycles. Additionally Aluminium was analysed in specimens with low number of cycles and may be cause for early rupture during corrosion fatigue tests. These findings reveal a very high sensitivity on a homogeneous microstructure upon the corrosion and corrosion fatigue behaviour of X5CrNiCuNb16-4 and needs to be taken into account when regarding this steel as pipe steel during injection of CO2 into saline aquifers. T2 - 13th International Conference on Greenhouse Gas Control Technologies CY - Lausanne, Switzerland DA - 14.11.2016 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418525 DO - https://doi.org/10.1016/j.egypro.2017.03.1678 SN - 1876-6102 VL - 114 SP - 5219 EP - 5228 AN - OPUS4-41852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Bork, Claus-Peter T1 - Corrosion fatigue of X46Cr13 at 60 °C exposed to CO2-saturated geothermal brine T2 - EUROCORR 2012 - The European corrosion congress N2 - In geothermal power plants the materials used in pumps are loaded cyclically and exposed constantly to the highly corrosive hot thermal water. The lifetime reduction of AISI 420C (X46Cr13, 1.4034) is demonstrated in in-situ-laboratory experiments (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2). S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue may be identified as failure cause. T2 - EUROCORR 2012 - The European corrosion congress CY - Istanbul, Turkey DA - 2012-09-09 KW - Steel KW - Corrosion fatigue KW - Corrosion chamber KW - CCS KW - CO2-storage PY - 2012 SP - 1 EP - 11 AN - OPUS4-28586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, M. A1 - Kranzmann, Axel T1 - Corrosion and Corrosion Fatigue of Steels in Downhole CCS Environment—A Summary JF - MDPI Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/− applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion fatigue KW - Cabon capture and storage KW - CCS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541626 DO - https://doi.org/10.3390/pr9040594 VL - 9 IS - 4 SP - 594 PB - MDPI AN - OPUS4-54162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, M. A1 - Kranzmann, Axel T1 - Corrosion and Corrosion Fatigue of Steels in Downhole CCS Environment—A Summary JF - Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60°C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60°C , brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Carbon capture and storage KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - CCS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523948 DO - https://doi.org/10.3390/pr9040594 VL - 9 IS - 4 SP - 594 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Wojtas, P. A1 - Spengler, I. A1 - Linke, B. A1 - Kranzmann, Axel ED - Villacampa, V. ED - Brebbia, C.A. ED - Mammoli, A.A. T1 - Influence of heat treatment on the corrosion behavior of steels exposed to CCS environment T2 - Energy and Sustainability III N2 - The influence of heat treatment on pit corrosion needs to be considered to guarantee reliability and safety during the injection of compressed emission gasses – mainly containing CO2 – into deep geological layers (CCS-technology, Carbon Capture and Storage). In laboratory experiments different heat treated steels used as injection pipe with 13% Chromium and 0.46% Carbon (X46Cr13, 1.4034) as well as 0.2% Carbon (X20Cr13, 1.4021) were tested. Also X5CrNiCuNb16-4 (1.4542) was investigated as typical steel used for geothermal pumps. Keeping stable environmental conditions in laboratory experiments the samples were exposed to the distinct synthetic aquifer environment saturated with technical CO2 at a flow rate of 3 l/h for up to 6 months. Independent of the exposure time the least amount of pits is found on hardened steels with martensitic microstructure where X5CrNiCuNb16-4 shows fewer pits than X46Cr13 and X20Cr13. Regarding steels with similar Cr-content the higher Ccontent in 1.4034 results in fewer pits compared to 1.4021. KW - Steel KW - Heat treatment KW - Pit corrosion KW - CCS KW - CO2-injection KW - CO2-storage PY - 2011 SN - 978-1-84564-508-3 DO - https://doi.org/10.2495/ESUS110411 SN - 1746-448X SN - 1743-3541 SP - 487 EP - 498 PB - WIT Press CY - Southampton, UK AN - OPUS4-23840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wojtas, P. A1 - Spengler, I. A1 - Kranzmann, Axel T1 - Effect of heat treatment of injection pipe steels on the formation of local corrosion in CCS-environment T2 - 2nd Oxyfuel combustion conference N2 - When engineering a Carbon Capture and Storage site (CCS) local corrosion (pitting) of the injection pipe steel may become an issue when emission gasses from oxyfuel power plants are compressed into deep geological layers. This highly corrosive environment arises when the flue gasses, mainly composed of CO2 , are injected into saline aquifer water. Immediately carbonic acid is formed causing corrosive attack of the injection steels. The influence of heat treatment on the local corrosion resistance was demonstrated in laboratory experiments at 60 °C and ambient pressure for three steels X46Cr13 (1.4034), X20Cr13 (1.4021) and X5CrNiCuNb16-4 (1.4543) under a similar liquid corrosive environment as found at a geological onshore CCS-site in the Northern German Bassin. T2 - 2nd Oxyfuel combustion conference CY - Yeppoon, Queensland, Australia DA - 12.09.2011 KW - Steel KW - Pipe KW - Corrosion KW - Heat treatment KW - CO2-injection KW - CO2-storage CCS KW - Carbonate KW - Ambient pressure KW - CCS KW - Steels PY - 2011 SP - 1 EP - 3 AN - OPUS4-25536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Schulz, Sabrina A1 - Linke, Barbara A1 - Kranzmann, Axel T1 - Supercritical CO2-corrosion in pipe steels during carbon capture and storage CCS T2 - 4th International conference on sustainable energy and environment (SEE 2011) - A paradigm shift to low carbon society N2 - The CCS technique involves the compression of emission gasses in deep geological layers. To guarantee the safety of the site, C02-corrosion of the injection pipe steels has to be given special attention when engineering CCSsites. To get to know the corrosion behaviour samples of the heat treated Steel 1.72252CrMo4, used for casing, and the stainless injection-pipe Steel 1.4034 X46Cr 13 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a C02-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. The isothermal corrosion behaviour obtained by mass gain of the steels in the gas phase, the liquid phase and the intermediate phase gives surface corrosion rates around 0.1 to 0.8 mm/year at ambient pressure and much lower about 0.02 to 0.2 mm/year at 100 bar where the C02 is in its supercritical state. Severe pit corrosion with pit heights around 4.5 mm are only located on the 42CrMo4 Steel. Main phase of the continuous complicated multi-layered carbonate/oxide structure is siderite FeCO} in both types of Steel. T2 - 4th International conference on sustainable energy and environment (SEE 2011) - A paradigm shift to low carbon society CY - Bangkok, Thailand DA - 23.11.2011 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - Supercritical CO2- KW - CO2-storage PY - 2011 SP - 1 EP - 6 AN - OPUS4-25534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Schulz, S. A1 - Werlitz, T. A1 - Bülow, E. A1 - Wetzlich, S. A1 - Tietböhl, J. A1 - Frieslich, C. A1 - Kranzmann, Axel T1 - Influence of heat treatment on the corrosion of steels in CCS environment T2 - TMS 2012 - 141st Annual Meeting & Exhibition (Proceedings) T2 - TMS 2012 - 141st Annual Meeting & Exhibition CY - Orlando, FL, USA DA - 2012-03-11 KW - CCS KW - Carbon capture and storage KW - Corrosion KW - Steel KW - Pipeline KW - Carbon KW - Heat treatment KW - CO2-storage PY - 2012 SN - 978-1-11829-607-3 VL - 1 IS - Supplemental Proceedings SP - 103 EP - 110 PB - John Wiley & Sons CY - Hoboken, NJ, USA AN - OPUS4-28007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Schiz, J. A1 - Kranzmann, Axel ED - Jha, A. ED - Wang, C. ED - Neelameggham, N.R. ED - Guillen, D.P. ED - Li, L. ED - Belt, C.K. ED - Kirchain, R. ED - Spangenberger, J.S. ED - Johnson, F. ED - Gomes, A.J. ED - Pandey, A. ED - Hosemann, P. T1 - The role of austenitizing routines of pipe steels during CCS T2 - Energy Technology 2015: Carbon Dioxide Management and Other Technologies N2 - Properties of pipe steels for CCS technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitizing in heat treatment routines of two different injection pipe steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900 – 1050 °C) for different lengths of time (30–90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitizing time KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Austenitizing PY - 2015 SN - 978-1-119-08240-8 DO - https://doi.org/10.1002/9781119093220.ch15 SP - 131 EP - 137 PB - Wiley AN - OPUS4-34924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Linke, Barbara A1 - Schulz, Sabrina A1 - Kranzmann, Axel T1 - Supercritical CO2-corrosion in pipe steels during carbon capture and storage CCS T2 - 3rd International congress on green process engineering (GPE 2011) N2 - The CCS technique involves the compression of emission gasses in deep geological layers. To guarantee the safety of the site, CC>2-corrosion of the injection pipe steels has to be given special attention when engineering CCS-sites. To get to know the corrosion behaviour samples of the heat treated Steel 1.72252CrMo4, used for casing, and the stainless injection-pipe Steel 1.4034 X46Crl3 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CC>2-saturated synthetic aquifer environment similar to possible geological onshore CCS-sites in the northern German Basin. The isothermal corrosion behaviour obtained by mass gain of the steels in the gas phase, the liquid phase and the intermediate phase gives surface corrosion rates around 0.1 to 0.8 mm/year at ambient pressure and much lower about 0.02 to 0.2 mm/year at 100 bar where the CO2 is in its supercritical state. Severe pit corrosion with pit heights around 4.5 mm are only located on the 42CrMo4 Steel. Main phase of the continuous complicated multi-layered carbonate/oxide structure is siderite FeCCh in both types of Steel. T2 - 3rd International congress on green process engineering (GPE 2011) CY - Kuala-Lumpur, Malaysia DA - 06.12.2011 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - Supercritical CO2- KW - CO2-storage PY - 2011 SP - 1 EP - 6 AN - OPUS4-25535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Linke, Barbara A1 - Kranzmann, Axel T1 - Carbon capture and storage technique (CCS): Reliability of pipe steels used in Ketzin, Germany verified in laboratory saline aquifer corrosion experiments T2 - MWWD & IEMES 2010 - 6th International conference on marine waste water discharges and coastal environment (Proceedings) N2 - During the compression emission gasses in deep geological layers (Carbon Capture and Storage, CCS) CO2-corrosion will become a relevant safety issue. The reliability of the steels used at the geological onshore CCS-site at Ketzin, Germany, (heat treated steel 42CrMo4 (1.7225, AISI 4140) used for casing, and the martensitic stainless injection pipe steels X46Cr13 (1.4034, AISI 420 C), X20Cr13 (1.4021, AISI 420 J), X35CrMo17 (1.4122)) is demonstrated in 1 and 2 years laboratory experiments. Samples were kept in a synthetic aquifer environment similar to the geological CCS-site at Ketzin, Germany at T=60 °C. This corrosive environment is then saturated with technical CO2 at a flow rate of 3 l/h. Microstructures were characterized by X-ray diffraction, light microscopy, scanning electron microscopy, and energy dispersive X-ray, after a series of heat treatments (700 h to 2 years). Due to very slow mass loss at extended exposure times to CCS-environment one year is sufficient to predict stable surface corrosion rates from laboratory experiments. The non-linear isothermal surface corrosion behaviour of the steels reveals surface corrosion rates around 0.1 to 0.8 mm/year, when obtained by mass gain. The loss of the base material is higher when calculated from the corrosion layer magnitude due to the unpredictable local corrosion attacks. Severe pit corrosion (pit heights ca. 4.5 mm) are only located on the high chromium steels. Main phases of the continuous scales are siderite FeCO3 and goethite α-FeOOH. The formation of the non-protective layer is likely to form via a transient Fe(OH)2-phase. T2 - MWWD & IEMES 2010 - 6th International conference on marine waste water discharges and coastal environment CY - Langkawi, Malaysia DA - 2010-10-25 KW - Saline aquiver KW - Environmental issues KW - CCS KW - CO2-injection KW - CO2-storage KW - Corrosion KW - Phase formation PY - 2010 SN - 978-9944-5566-4-4 IS - Paper 047_P SP - 1 EP - 17 AN - OPUS4-22333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Linke, Barbara A1 - Kranzmann, Axel T1 - Corrosion behaviour of pipe steels exposed for 2 years to CO2 -saturated saline aquifer environment similar to the CCS-site Ketzin, Germany JF - Energy procedia N2 - When emission gasses are compressed into deep geological layers (CCS) CO2-corrosion of injection pipe steels is a relevant safety issue. The reliability of the steels used at the geological onshore CCS-site at Ketzin, Germany, is demonstrated in 2 years laboratory experiments under an equivalent corrosive environment at ambient pressure (T=60 °C, aquifer water, CO2-flow rate of 3 l/h). Corrosion kinetics and microstructures were characterized using samples of the heat treated steel 42CrMo4 (casing), and samples of the martensitic stainless steel X46Cr13 (injection). KW - Steel KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2011 SN - 1876-6102 VL - 4 SP - 5122 EP - 5129 PB - Elsevier CY - Amsterdam AN - OPUS4-23621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Linke, B. A1 - Schulze, S. A1 - Kranzmann, Axel T1 - Corrosion in pipe steels exposed to supercritical CO2 during carbon capture and storage CCS T2 - EUROCORR 2011 - Developing solutions for the global challenge N2 - The CCS technique involves the compression of emission gasses in deep geological layers. To guarantee the safety of the site, CO2-corrosion of the injection pipe steels has to be given special attention when engineering CCS-sites. To get to know the corrosion behaviour samples of the heat treated steel 1.72252CrMo4, used for casing, and the stainless injection-pipe steel 1.4034 X46Cr13 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CC 2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. The isothermal corrosion behaviour obtained by mass gain of the steels in the gas phase, the liquid phase and the intermediate phase gives surface corrosion rates around 0.1 to 0.8 mm/year at ambient pressure and much lower about 0.02 to 0.2 mm/year at 100 bar where the CO 2 is in its supercritical state. Severe pit corrosion with pit heights around 4.5 mm are only located on the 42CrMo4 steel. Main phase of the continuous complicated multi-layered carbonate/oxide structure is siderite FeCO 3 in both types of steel. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - CO2-storage PY - 2011 SP - Paper 1044-1 EP - Paper 1044-8 AN - OPUS4-28008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Linke, B. A1 - Schulze, S. A1 - Kranzmann, Axel T1 - Static and dynamic long term corrosion experiments in CCS-conditions T2 - EUROCORR 2011 - Developing solutions for the global challenge N2 - Dealing with first corrosion screening experiments to predict the reliability and safety of Germanys first Carbon Capture and Storage site in the northern Bassin of Germany, northwest of the Capital Berlin, laboratory experiments have been established to simulate the particular conditions at T=60 °C, highly saline aquifer water similar to 'Stuttgart Aquifer', but only at ambient pressure. With mounting 2 independent full 2-grade titanium autoclave systems (running up to 250 bar and 300 °C) pressures up to p=100 bar are possible. In 2010 a specific corrosion chamber of 2-grade titanium working up to 100 °C, flowing aqui fer water with different gas mixtures was designed to fit to a high cycle fatigue testing machine. Long term fatigue experiments simulating fatigue crack growth under corrosive environments will soon start. These experiments may not only help engineering a CCS site, but results can be used to improve the maintenance of geothermal energy production sites, especially moved parts such as pumps and shafts. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - CO2 KW - Static corrosion KW - High cycle fatigue KW - Steel KW - CCS KW - CO2-storage KW - Corrosion PY - 2011 SP - 1 EP - 7 (Paper 1087) AN - OPUS4-28009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel A1 - Wolthusen, Helmut T1 - Unusual Corrosion Behavior of 1.4542 Exposed a Laboratory Saline Aquifer Water CCS-Environment JF - Energy Procedia N2 - Differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Surface corrosion layers are homogeneous but unusually discontinuously ellipsoidal. After 8000 h at 100 bar maximum corrosion rate in the liquid phase is approximately 0.014 mm/year, with normalizing providing best corrosion resistance and approximately 0.003 mm/year in the supercritical phase where hardening+tempering at 670 °C leads to lowest corrosion rates. KW - CO2-storage KW - Supercritical CO2 KW - Steel KW - Pipeline KW - Corrosion KW - CCS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418472 DO - https://doi.org/10.1016/j.egypro.2017.03.1679 VL - 114 SP - 5229 EP - 5240 PB - Elsevier Ltd. AN - OPUS4-41847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Reliability of pipe steels with different amounts of C and Cr during onshore carbon dioxide injection JF - International journal of greenhouse gas control N2 - During the compression of emission gasses into deep geological layers (Carbon Dioxide Capture and Storage, CCS) CO2-corrosion will become a relevant safety issue. The reliability of the steels used at a geological onshore CCS-site in the Northern German Bassin 42CrMo4 (1.7225, AISI 4140) used for casing, and the injection pipe steels X46Cr13 (1.4034, AISI 420 C), X20Cr13 (1.4021, AISI 420 J) as well as X35CrMo17 (1.4122) is demonstrated in laboratory experiments. Samples were kept in a synthetic aquifer environment at T = 60 °C. This corrosive environment is then saturated with technical CO2 at a flow rate of 3 l/h. Microstructures were characterized by X-ray diffraction, light microscopy, scanning electron microscopy, and energy dispersive X-ray analysis, after a series of heat treatments (700 h to 2 years). The non-linear isothermal surface corrosion behaviour of the steels reveals surface corrosion rates around 0.1–0.8 mm/year, when obtained by mass gain. Severe pit corrosion (pit heights ca. 4.5 mm) are only located on the injection pipe steels. Main phases of the continuous scales are siderite FeCO3 and goethite α-FeOOH. The formation of the non-protective layer is likely to form via a transient Fe(OH)2-phase. KW - Steel KW - Pipe KW - Corrosion KW - Carbonate layer KW - CO2-injection KW - CO2-storage CCS PY - 2011 DO - https://doi.org/10.1016/j.ijggc.2011.03.006 SN - 1750-5836 VL - 5 IS - 4 SP - 757 EP - 769 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-25533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -