TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Wiegand, Reiner A1 - Kranzmann, Axel A1 - Bork, Claus-Peter T1 - Corrosion fatigue behavior and S-N-curve of X46Cr13 exposed to CCS-environment obtained from laboratory in-situ-experiments JF - Energy Procedia N2 - In corrosive environments such as CCS bore holes or geothermal power plants the materials loaded cyclically are also exposed constantly to the highly corrosive hot thermal water. The lifetime reduction of (X46Cr13, AISI 420C) is demonstrated in in-situ-laboratory experiments (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 Nl/h, CO2). S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue is most likely failure cause. KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2013 DO - https://doi.org/10.1016/j.egypro.2013.06.499 SN - 1876-6102 VL - 37 SP - 5764 EP - 5772 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-29342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Schulze, Thomas ED - Knaut, M. T1 - Werkstoffcharakterisierung für Implantattechnologie in in-situ Ermüdungsversuchen T2 - Beiträge & Positionen der HTW Berlin: Gesundheit - Vielfätige Lösungen aus Technik und Wirtschaft KW - Werkstoffcharakterisierung KW - Schwingungskorrosion PY - 2014 SN - 978-3-8305-3368-9 SP - 160 EP - 165 PB - BWV - Berliner Wissenschafts-Verlag CY - Berlin AN - OPUS4-31208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Corrosion and corrosion fatigue of steels in downhole CCS environment - A summary JF - Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO₃ and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO₂: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - Carbon capture and storage PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531391 DO - https://doi.org/10.3390/pr9040594 SN - 2227-9717 VL - 9 IS - 4 SP - 1 EP - 33 PB - MDPI CY - Basel AN - OPUS4-53139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Evaluating corrosion and corrosion fatigue behavior via laboratory testing techniques in highly corrosive CCS-environment T2 - Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021 N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO₂). T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2021 DO - https://doi.org/10.2139/ssrn.3812193 SP - 1 EP - 11 PB - SSRN CY - Rochester, NY AN - OPUS4-53142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Gröber, Andre A1 - Böllinghaus, Thomas A1 - Kranzmann, Axel T1 - Corrosion fatigue of 1.4542 exposed to a laboratory saline aquifer water CCS-environment T2 - Energy Procedia N2 - X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ∼ 30 Hz). Due to the rather heterogeneous fine machined surfaces (Rz=4) the specimens are comparable with prefabricated parts. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa and lies 60% below the stress amplitude measured in air. The scatter range TN = 1:34 is disproportionately large. Although the fracture surface exhibited the typical striations and corroded surface areas no significant differences were found. The hardness was found to be homogeneous in all specimens tested at 335 HV10. Non-metallic inclusions were found within the microstructure, but no correlation could be found between the inclusions and early rupture. Still specimens that showed inclusions at the fracture surface and its cross section endured lower number of cycles. Additionally Aluminium was analysed in specimens with low number of cycles and may be cause for early rupture during corrosion fatigue tests. These findings reveal a very high sensitivity on a homogeneous microstructure upon the corrosion and corrosion fatigue behaviour of X5CrNiCuNb16-4 and needs to be taken into account when regarding this steel as pipe steel during injection of CO2 into saline aquifers. T2 - 13th International Conference on Greenhouse Gas Control Technologies CY - Lausanne, Switzerland DA - 14.11.2016 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418525 DO - https://doi.org/10.1016/j.egypro.2017.03.1678 SN - 1876-6102 VL - 114 SP - 5219 EP - 5228 AN - OPUS4-41852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Bork, Claus-Peter T1 - Corrosion fatigue of X46Cr13 at 60 °C exposed to CO2-saturated geothermal brine T2 - EUROCORR 2012 - The European corrosion congress N2 - In geothermal power plants the materials used in pumps are loaded cyclically and exposed constantly to the highly corrosive hot thermal water. The lifetime reduction of AISI 420C (X46Cr13, 1.4034) is demonstrated in in-situ-laboratory experiments (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2). S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue may be identified as failure cause. T2 - EUROCORR 2012 - The European corrosion congress CY - Istanbul, Turkey DA - 2012-09-09 KW - Steel KW - Corrosion fatigue KW - Corrosion chamber KW - CCS KW - CO2-storage PY - 2012 SP - 1 EP - 11 AN - OPUS4-28586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, M. A1 - Kranzmann, Axel T1 - Corrosion and Corrosion Fatigue of Steels in Downhole CCS Environment—A Summary JF - MDPI Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/− applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion fatigue KW - Cabon capture and storage KW - CCS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541626 DO - https://doi.org/10.3390/pr9040594 VL - 9 IS - 4 SP - 594 PB - MDPI AN - OPUS4-54162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, M. A1 - Kranzmann, Axel T1 - Corrosion and Corrosion Fatigue of Steels in Downhole CCS Environment—A Summary JF - Processes N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60°C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60°C , brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Carbon capture and storage KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - CCS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523948 DO - https://doi.org/10.3390/pr9040594 VL - 9 IS - 4 SP - 594 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, Anja A1 - Wojtas, P. A1 - Spengler, I. A1 - Linke, B. A1 - Kranzmann, Axel ED - Villacampa, V. ED - Brebbia, C.A. ED - Mammoli, A.A. T1 - Influence of heat treatment on the corrosion behavior of steels exposed to CCS environment T2 - Energy and Sustainability III N2 - The influence of heat treatment on pit corrosion needs to be considered to guarantee reliability and safety during the injection of compressed emission gasses – mainly containing CO2 – into deep geological layers (CCS-technology, Carbon Capture and Storage). In laboratory experiments different heat treated steels used as injection pipe with 13% Chromium and 0.46% Carbon (X46Cr13, 1.4034) as well as 0.2% Carbon (X20Cr13, 1.4021) were tested. Also X5CrNiCuNb16-4 (1.4542) was investigated as typical steel used for geothermal pumps. Keeping stable environmental conditions in laboratory experiments the samples were exposed to the distinct synthetic aquifer environment saturated with technical CO2 at a flow rate of 3 l/h for up to 6 months. Independent of the exposure time the least amount of pits is found on hardened steels with martensitic microstructure where X5CrNiCuNb16-4 shows fewer pits than X46Cr13 and X20Cr13. Regarding steels with similar Cr-content the higher Ccontent in 1.4034 results in fewer pits compared to 1.4021. KW - Steel KW - Heat treatment KW - Pit corrosion KW - CCS KW - CO2-injection KW - CO2-storage PY - 2011 SN - 978-1-84564-508-3 DO - https://doi.org/10.2495/ESUS110411 SN - 1746-448X SN - 1743-3541 SP - 487 EP - 498 PB - WIT Press CY - Southampton, UK AN - OPUS4-23840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wojtas, P. A1 - Spengler, I. A1 - Kranzmann, Axel T1 - Effect of heat treatment of injection pipe steels on the formation of local corrosion in CCS-environment T2 - 2nd Oxyfuel combustion conference N2 - When engineering a Carbon Capture and Storage site (CCS) local corrosion (pitting) of the injection pipe steel may become an issue when emission gasses from oxyfuel power plants are compressed into deep geological layers. This highly corrosive environment arises when the flue gasses, mainly composed of CO2 , are injected into saline aquifer water. Immediately carbonic acid is formed causing corrosive attack of the injection steels. The influence of heat treatment on the local corrosion resistance was demonstrated in laboratory experiments at 60 °C and ambient pressure for three steels X46Cr13 (1.4034), X20Cr13 (1.4021) and X5CrNiCuNb16-4 (1.4543) under a similar liquid corrosive environment as found at a geological onshore CCS-site in the Northern German Bassin. T2 - 2nd Oxyfuel combustion conference CY - Yeppoon, Queensland, Australia DA - 12.09.2011 KW - Steel KW - Pipe KW - Corrosion KW - Heat treatment KW - CO2-injection KW - CO2-storage CCS KW - Carbonate KW - Ambient pressure KW - CCS KW - Steels PY - 2011 SP - 1 EP - 3 AN - OPUS4-25536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -