TY - CONF A1 - Pfennig, A. A1 - Gröber, A. A1 - Kranzmann, Axel T1 - The Role of Surface Texture on the Corrosion Behavior of High Alloyed Steel Exposed to Saline Aquifer Water Environments N2 - Coupons of X5CrNiCuNb16-4 that may be used as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water similar to the conditions in the Northern German Basin at ambient pressure and 60 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - High alloyed steel KW - Pitting KW - Surface KW - Roughness KW - CO2 PY - 2019 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-50375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Gröber, A. A1 - Simkin, Roman A1 - Kranzmann, Axel T1 - Influence of Surface Quality on the Corrosion and Corrosion Fatigue Behavior of High Alloyed Steels Exposed to Different Saline Aquifer Water Environment N2 - Coupons of X5CrNiCuNb16-4 with different surface roughness that may be utilized as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water simulating the conditions in the Northern German Basin at ambient pressure and 60 °C. Additionally, corrosion fatigue experiments (ambient pressure, technically clean CO2, saline aquifer water of Stuttgart Aquifer) were performed using specimen of X46Cr13 (1.4043, AISI 420C) with regard to the influence of the roughness of technical surfaces on the number of cycles to failure at different stress amplitudes. Specimen of Duplex stainless steel X2CrNiMoN22-3-2 (1.4462) for corrosion fatigue experiments were provided with technical surfaces after machining as well as polished surfaces. Results were obtained at load amplitudes ranging from 175 MPa to 325 MPa in the geothermal brine of the Northern German Basin at 98 °C. The main precipitation phases on the surface as well as within pits reveal carbonates or hydroxides such as siderite (FeCO3) and ferrous hydroxide goethite (FeOOH) independent of the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. Specimen with technical surfaces tested at high stress amplitudes (>275 MPa) lasted longer (cycles to failure: P50% at Sa 300 MPa=5x105) than specimen with polished surfaces (cycles to failure: P50% at Sa 300 MPa=1.5x105). This behavior is emphasized by the slope coefficient (technical surfaces k = 19.006, polished surfaces k=8.78) meaning earlier failure for polished at high stress amplitude Sa. Although rather low scatter ranges (technical surface: TN=1:1.35, polished surface: TN=1.1.95) indicate no change in failure mechanism it may be assumed that at low stress pitting is the initiating crack growth process whereas at high stress amplitudes the formation of micro cracks is reason for crack propagation and failure. KW - High Alloyed Steel KW - Pitting KW - Surface KW - Roughness KW - Corrosion Fatigue PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503772 DO - https://doi.org/10.20319/mijst.2019.51.115137 SN - 2454-5880 VL - 5 IS - 1 SP - 115 EP - 137 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Kranzmann, Axel ED - Brebbia, C.A. ED - Longhurst, J.W.S. T1 - The role of pit corrosion in engineering the carbon storage site Ketzing, Germany T2 - Air pollution XVIII CY - Kos, Greece DA - 2010-06-21 KW - CO2-Speicherung KW - Ketzin KW - Korrosion KW - Steel KW - Pipeline KW - Pit corrosion KW - CCS KW - CO2-injection KW - CO2-storage PY - 2010 SN - 978-1-84564-450-5 DO - https://doi.org/10.2495/AIR100101 SN - 1746-448X SN - 1734-3541 SP - 109 EP - 119 PB - WIT Press AN - OPUS4-21683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545700 DO - https://doi.org/10.3390/cleantechnol4020014 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion and Fatigue of Heat Treated Martensitic Stainless Steel 1.4542 used for Geothermal Applications N2 - During capture and storage technology (CCS) as well as in geothermal energy production Steels need to withstand the corrosive environment such as: heat, pressure, salinity of the aquifer and CO2-partial pressure. 1.4542 shows unusual corrosion phenomena, but is still sufficiently resistant in corrosive environments. To better understand its behaviour differently heat treated coupons of 1.4542 and for comparison X20Cr13 and X46Cr13 were kept in the artificial brine of the Northern German Basin at T=60 °C. Ambient pressure as well as p=100 bar for 700 h - 8000 h in water saturated supercritical CO2 and CO2-saturated synthetic aquifer Environment was applied. Fatigue tests were performed via push-pull tests with a series of 30 specimens from 150 MPa to 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). FeCO3 and FeOOH are corrosion products also after dynamic corrosion tests. Martensitic microstructure offers good corrosion resistance in geothermal environment. The S-N-curve showing no typical fatigue strength and very steep slopes of possible fatigue strength for finite life. Possible influencing artefacts, such as Al-inclusions could not be correlated to early rupture despite specimens containing inclusions at the fracture surface and cross section reached lower number of cycles. Applied potential proofed to enhance fatigue life tremendously. KW - High Alloyed Steel KW - Pitting KW - Corrosion Fatigue KW - Corrosion KW - Endurance Limit PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503765 DO - https://doi.org/10.20319/mijst.2019.51.138158 SN - 2454-5880 VL - 5 IS - 1 SP - 138 EP - 158 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Effect of CO2, atmosphere and pressure on the stability of C35CrMo17 stainless steel in laboratory CCS-environment N2 - During carbon sequestration the CO2-induced corrosion of injection pipe steels is a relevant safety issue when emission gasses are compressed into deep geological layers. The reliability of the high alloyed steel X35CrMo17 suitable as injection pipe for the geological onshore CCS-site (Carbon Capture and Storage) in the Northern German Basin, is demonstrated in laboratory experiments in equivalent corrosive environment (T = 60 °CC, p = 1–100 bar, aquifer water, CO2-flow rate of 9 L/h, 700–8000 h exposure time). Corrosion kinetics and microstructure were characterized and compared to other potential injection pipe steels (42CrMo4, X46Cr13, X20Cr13 and X5CrNiCuNb16-4). T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2019 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-50382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Degradation of AISI 630 exposed to CO2-saturated saline aquifer at ambient pressure and 100 bar N2 - In general high alloyed steels are suitable as pipe steels for carbon capture and storage technology (CCS), because they provide sufficient resistance against the corrosive environment of CO2-saturated saline aquifer which serves as potential CCS-site in Germany. High alloyed martensitic steel AISI 630 has been proven to be sufficient resistant in corrosive environments, e.g. regarding heat, pressure, salinity of the aquifer, CO2-partial pressure), but reveals a distinct corrosion pattern in CCS environment. Therefore coupons of AISI 630 heat treated using usual protocols were kept at T=60 °C and ambient pressure as well as p=100 bar up to 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. AISI 630 precipitates a discontinuous ellipsoidal corrosion layer after being exposed for more than 4000 hours. Best corrosion resistance in the CO2-saturated synthetic aquifer environment phase is achieved via normalizing prior to exposure. In water saturated supercritical CO2 tempering at medium temperatures after hardening gives lowest corrosion rates. Corrosion fatigue via push-pull tests with a series of 30 specimens was evaluated at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). The endurance limit of AISI 630 is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa). KW - Corrosion Fatigue KW - High Cycle Fatigue KW - Steel KW - Ccs KW - Co2-Storage PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503783 DO - https://doi.org/10.22587/jasr.2018.14.6.3 SN - 1819-544X SN - 1816-157X SP - 11 EP - 17 PB - INSInet Publications CY - Faisalabad AN - OPUS4-50378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Linke, B. A1 - Kranzmann, Axel T1 - Predicting the long term corrosion behaviour of pipe steels used at the CCS-site Ketzing, Germany in laboratory CO2-saturated saline aquifer CCS-environment T2 - First international conference on materials for energy CY - Karlsruhe, Germany DA - 2010-07-04 KW - CCS KW - Corrosion KW - Steels KW - Injection pipe PY - 2010 SN - 978-3-89746-117-8 IS - Paper 1067 SP - 1005 EP - 1007 AN - OPUS4-21684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Simkin, Roman A1 - Kranzmann, Axel T1 - Construction of an adiabatic calorimeter for investigation of high tempertarue salt - based phase change material N2 - The commercial usage of latent thermal energy storages primarily depends on the development of a suitable phase change material (PCM). For industrial high temperature applications above 400 °C multicomponent chloride eutectics are promising and therefore discussed seriously. The profound thermodynamic investigation of such eutectics requires a much greater amount of specimen material than conventional calorimeter can handle. Therefore, a special adiabatic calorimeter was developed and designed. With a specimen mass of > 100 g the typical thermodynamic measurements with a commercial calorimeter can be extended by cycle stability measurements, which are often decisive for practical application of PCM. Furthermore, by implementing corrosion specimens inside the calorimeter high temperature corrosion experiments according to ISO 21608 can be performed inside the calorimeter. Adiabatic measuring conditions can be provided by using two separate heating systems. Therefore, the outer “protective system” follows the temperature curve of the inner “measuring system” minimizing the temperature difference between the heating systems and simultaneously preventing heat losses from the measuring systems. T2 - 10th International Conference on Chemical, Biological and Environmental Engineering ICBEE 2018 CY - Berlin, Germany DA - 27.09.2018 KW - Adiabatic calorimeter KW - Thermal energy storage KW - Phase change material KW - Salt eutectics PY - 2018 DO - https://doi.org/10.7763/IPCBEE.2018.V103.6 VL - 103 SP - 21 EP - 28 AN - OPUS4-50363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - The role of surface texture on the corrosion fatigue behavior of high alloyed stainless steel exposed to saline aquifer water environment N2 - Corrosion fatigue specimen with different surfaces (technical surfaces after machining and polished surfaces) of high alloyed martensitic stainless steel X46Cr13 (1.4043) and duplex stai nless steel X2CrNiMoN22 3 2 (1.4462) were compared at load amplitudes from 175 MPa to 325 MPa in the geothermal brine of the N orthern German Basin at 98 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO 3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness . At high stress amplitudes above 275 MPa technical surfaces (P50% at σa 300 MPa=5 × 10 5 ) resulted in more cycles to failure than polished (P50% at σa 300 MPa=1.5 × 10 5 ). The greater slope coefficient for technical surfaces k = 19.006 compared to polished surfaces k =8.78 demonstrate s earlier failure at given stress amplitude σa . KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2019 DO - https://doi.org/10.17706/ijmse SN - 2315-4527 VL - 7 IS - 2 SP - 26 EP - 33 PB - IAP - International Academy Publishing CY - San Bernardino, CA AN - OPUS4-50365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - In-situ testing of corrosion and corrosion fatigue behavior of stainless steels in geothermal environment N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2 ). T2 - 10th International Conference on Chemical, Biological and Environmental Engineering ICBEE 2018 CY - Berlin, Germany DA - 27.09.2018 KW - Adiabatic calorimeter KW - Thermal energy storage KW - Phase change material KW - Salt eutectics PY - 2018 DO - https://doi.org/10.7763/IPCBEE.2018.V103.5 VL - 103 SP - 13 EP - 20 AN - OPUS4-50364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolf, Marcus T1 - High-temperature-high pressure stress-strain testing of materials in CO2-containing saline solutions N2 - In-situ stress-strain testing under corrosive environment, such as corrosive gasses (e.g. CO2) and highly saline water, is a challenge in testing corrosion fatigue of materials, e.g. for geothermal application or CCS (carbon capture and storage). The first corrosion chamber system was designed for performance at ambient pressure up to 100 °C. The second allows for corrosion fatigue testing at high pressure up to 200 bar and 400 °C. The highly flexible corrosion chambers allow for fast changing and easy alignment of test samples, visual monitoring, CAD-camera monitoring electrochemical measurements, O2-partial pressure or gas partial pressure measurement. Novelty is the fixing of the corrosion chamber directly onto the specimen, that guarantees best fitting and enables the test system to be modified easily suiting a variety of fatigue test machines. All parts of the test system are conforming to the technical rules. T2 - TMS 2015 annual meeting and exhibition CY - Orlando, FL, USA DA - 15.03.2015 PY - 2015 SN - 1-11-908241-2 SN - 978-1-119-08241-5 DO - https://doi.org/10.1002/9781119093466.ch123 SP - 1015 EP - 1022 PB - Wiley CY - Hoboken, NJ AN - OPUS4-35270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolf, Marcus A1 - Wiegand, Reiner A1 - Bork, Claus-Peter T1 - New in-situ measurement technique to determine corrosion fatigue in components and pipes under cyclic load N2 - In the field of water pipelines, geothermal energy production as well as carbon capture and storage technology (CCS) materials have to provide a high resistance to corrosion and mechanical stress. The combination of cyclic load and corrosive aqueous environment leads to corrosion fatigue of pipes and components (e.g. pumps) and thus inevitably to the reduction of the lifetime of these components. To estimate the reliability of components from adjusted in-situ-laboratory experiments a corrosion chamber was designed and tested with CO2 saturated corrosive aqueous media flowing at a steady rate. Unique feature of this special chamber is its installation directly onto the sample and thus providing flexible usability in almost every testing machine. This allows simultaneous mechanical loading of the sample, operation at temperatures up to 100 °C and exposure to fluid flow of corrosive liquids and gases. The lifetime reduction of AISI 420C (X46Cr13, 1.4034) is demonstrated at T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2. S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue may be identified as failure cause. T2 - MWWD & IEMES 2012 CY - Budva, Montenegro DA - 22.10.2012 KW - Corrosion fatigue KW - Corrosion chamber KW - S-N-plots KW - Steel KW - In-situ experiment PY - 2012 SN - 978-9944-5566-6-8 SP - 1 EP - 8 AN - OPUS4-28569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolthusen, Helmut A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Effect of heat treatment of injection pipe steels on the reliability of a saline aquifer water CCS-site in the Northern German basin N2 - Samples of differently heat treated high alloyed stainless injection-pipe steels AISI 420 X46Cr13, AISI 420J X20Cr13 as well as X5CrNiCuNb16-4 AISI 630 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2- saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Corrosion rates and scale growth are lowest after long term exposure for steels hardened and tempered at 600 to 670 °C and pits - indicating local corrosion- decrease in diameter but increase in number as a function of carbon content of the steel. Martensitic microstructure is preferred with respect to this particular CCS-site. T2 - GHGT-12 - Greenhouse gas control technologies conference CY - Austin, TX, USA DA - 05.10.2014 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-319433 DO - https://doi.org/10.1016/j.egypro.2014.11.609 SN - 1876-6102 N1 - Serientitel: Energy Procedia – Series title: Energy Procedia VL - 63 SP - 5762 EP - 5772 PB - Elsevier Ltd. AN - OPUS4-31943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Wolthusen, Helmut A1 - Zastrow, Philip A1 - Kranzmann, Axel ED - Jha, A. ED - Wang, C. ED - Neelameggham, N.R. ED - Guillen, D.P. ED - Li, L. ED - Belt, C.K. ED - Kirchain, R. ED - Spangenberger, J.S. ED - Johnson, F. ED - Gomes, A.J. ED - Pandey, A. ED - Hosemann, P. T1 - Evaluation of heat treatment performance of potential pipe steels in CCS-environment N2 - To resist the corrosive geothermal environment during carbon capture and storage CCS -such as: heat, pressure, salinity of the aquifer, CO2-partial pressure, properties of pipe steels-require certain specification. For evaluation samples of differently heat treated high alloyed stainless injection-pipe steels AISI 420 X46Cr13, AISI 420J X20Cr13 as well as X5CrNiCuNb16–4 AISI 630 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h up to 8000 h in a CO2-saturated synthetic aquifer environment similar to a possible geological situation in the northern German Basin. Corrosion rates and scale growth are lowest after long term exposure for steels hardened and tempered at 600 °C to 670 °C and pits -indicating local corrosion- decrease in diameter but increase in number as a function of carbon content of the steel. Martensitic microstructure is preferred with respect to these particular conditions. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - High temperature KW - High pressure PY - 2015 SN - 978-1-119-08240-8 DO - https://doi.org/10.1002/9781119093220.ch2 SP - 15 EP - 22 PB - Wiley AN - OPUS4-34717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolf, Marcus A1 - Heynert, Katharina A1 - Böllinghaus, Thomas A1 - Pfennig, A. T1 - First in-situ electrochemical measurement during fatigue testing of injection pipe steels to determine the reliability of a saline aquifer water CCS-site in the Northern German basin N2 - During carbon dioxide storage technology (carbon capture and storage, CCS) components are exposed to a corrosive environment and mechanical stress, which results in corrosion fatigue and inevitably followed by the a lifetime reduction of these components. In order to gain knowledge upon the corrosion fatigue strength of materials, Samples of high alloyed stainless injection-pipe steels AISI 420 X46Cr13, and X5CrNiCuNb16-4 AISI 630 were tested in a at T=60 °C and ambient pressure in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Therefore a corrosion chamber applied to a resonant testing machine allowing for “in situ” test conditions was designed and successfully tested. In-situ tension compression experiments were established using a resonant testing machine at a frequency as low as 30 – 40 Hz. In addition technical CO2 was introduced into the closed system at a rate close to 9 L/h to keep stable environmental conditions. Simultaneously electrochemical testing was performed to get information on failure causes and the mechanism of failure during the injection of CO2 into deep geological layers. S-N plots, micrographic analysis, and surface analysis of the fracture surface were applied to obtain sustainable information on the corrosion fatigue behavior of injection pipe steels. Samples used have a surface roughness of Rz = 4, to simulate technically machined surfaces. X46Cr13 reached the maximum number of cycles (12.5 x 106) at a stress amplitude of 173 MPa. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude at 150 MPa. The scatter range of X5CrNiCuNb16-4 is very high (1:34); by comparison the scatter range of X46Cr13 is only 1:3.5. T2 - GHGT-12 - Greenhouse gas control technologies conference CY - Austin, TX, USA DA - 05.10.2014 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-319426 DO - https://doi.org/10.1016/j.egypro.2014.11.610 SN - 1876-6102 N1 - Serientitel: Energy Procedia – Series title: Energy Procedia VL - 63 SP - 5773 EP - 5786 PB - Elsevier Ltd. AN - OPUS4-31942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolf, Marcus A1 - Pfennig, A. ED - Knaut, M. T1 - Konstruktion von Prüfanlagen zur Untersuchung der Schwingungsrisskorrosion N2 - Die Lebensdauer von Bauteilen welche gleichzeitig mechanisch und korrosiv belastet werden kann mit vorhandenen Literaturwerkstoffdaten nicht ausreichend bestimmt werden. So kommt es entweder im Betrieb frühzeitigen versagen, oder einer Überdimensionierung bei der Konstruktion. Um Werkstoffe unter Bedingen der SchwingungsrisskorroSIOn zu prüfen und somit belastbare Materialkennwerte zu bekommen, ist es notwendig diese unter Realbedingungen in hierfür geeigneten Prüfanlagen zu testen. T2 - NWK16 - 16. Nachwuchswissenschaftlerkonferenz 2015 CY - Berlin, Germany DA - 16.04.2015 KW - Corrosion fatigue KW - Konstruktion KW - Prüftechnik PY - 2015 SN - 978-3-8305-2044-3 SP - 1 EP - 5 PB - Berliner Wissenschafts-Verlag AN - OPUS4-33262 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -