TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach JF - MDPI Clean Technologies N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545700 DO - https://doi.org/10.3390/cleantechnol4020014 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion and Fatigue of Heat Treated Martensitic Stainless Steel 1.4542 used for Geothermal Applications JF - MATTER - International Journal of Science and Technology N2 - During capture and storage technology (CCS) as well as in geothermal energy production Steels need to withstand the corrosive environment such as: heat, pressure, salinity of the aquifer and CO2-partial pressure. 1.4542 shows unusual corrosion phenomena, but is still sufficiently resistant in corrosive environments. To better understand its behaviour differently heat treated coupons of 1.4542 and for comparison X20Cr13 and X46Cr13 were kept in the artificial brine of the Northern German Basin at T=60 °C. Ambient pressure as well as p=100 bar for 700 h - 8000 h in water saturated supercritical CO2 and CO2-saturated synthetic aquifer Environment was applied. Fatigue tests were performed via push-pull tests with a series of 30 specimens from 150 MPa to 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). FeCO3 and FeOOH are corrosion products also after dynamic corrosion tests. Martensitic microstructure offers good corrosion resistance in geothermal environment. The S-N-curve showing no typical fatigue strength and very steep slopes of possible fatigue strength for finite life. Possible influencing artefacts, such as Al-inclusions could not be correlated to early rupture despite specimens containing inclusions at the fracture surface and cross section reached lower number of cycles. Applied potential proofed to enhance fatigue life tremendously. KW - High Alloyed Steel KW - Pitting KW - Corrosion Fatigue KW - Corrosion KW - Endurance Limit PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503765 DO - https://doi.org/10.20319/mijst.2019.51.138158 SN - 2454-5880 VL - 5 IS - 1 SP - 138 EP - 158 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Effect of CO2, atmosphere and pressure on the stability of C35CrMo17 stainless steel in laboratory CCS-environment N2 - During carbon sequestration the CO2-induced corrosion of injection pipe steels is a relevant safety issue when emission gasses are compressed into deep geological layers. The reliability of the high alloyed steel X35CrMo17 suitable as injection pipe for the geological onshore CCS-site (Carbon Capture and Storage) in the Northern German Basin, is demonstrated in laboratory experiments in equivalent corrosive environment (T = 60 °CC, p = 1–100 bar, aquifer water, CO2-flow rate of 9 L/h, 700–8000 h exposure time). Corrosion kinetics and microstructure were characterized and compared to other potential injection pipe steels (42CrMo4, X46Cr13, X20Cr13 and X5CrNiCuNb16-4). T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2019 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-50382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Linke, B. A1 - Kranzmann, Axel T1 - Predicting the long term corrosion behaviour of pipe steels used at the CCS-site Ketzing, Germany in laboratory CO2-saturated saline aquifer CCS-environment T2 - First international conference on materials for energy T2 - First international conference on materials for energy CY - Karlsruhe, Germany DA - 2010-07-04 KW - CCS KW - Corrosion KW - Steels KW - Injection pipe PY - 2010 SN - 978-3-89746-117-8 IS - Paper 1067 SP - 1005 EP - 1007 AN - OPUS4-21684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Linke, B. A1 - Schulz, Sabrina A1 - Kranzmann, Axel T1 - CO2-corrosion of steels exposed to saline water environment T2 - TMS 2011 - 140th Annual Meeting & Exhibition (Proceedings) N2 - With CO2 being one reason for climate change carbon capture and storage (CCS) is discussed to mitigate climate change. When emission gases are compressed into deep geological layers CO2-corrosion can easily cause failure of injection pipes. Different steels 42CrMo4, X46Cr13 and X20Cr13 were tested as well as X35CrMo17 and X5CrNiCuNb16-4 in a laboratory Environment similar to the conditions of the CCS engineering site at the Northern German Bassin. Samples were exposed to synthetic aquifer water saturated with technical CO2 at a flow rate of 3 NL/h. Corrosion rates obtained via mass loss vary in a wide range (0,005 to 2.5 mm/year). The precipitations within the corrosion scale revealed a complicated multiphase layer containing siderite FeCO3, goethite α-FeOOH, lepidocrocite γ-FeOOH, mackinawite FeS and akaganeite Fe8O8(OH)8Cl1,34 and spinelphases of various compositions. T2 - TMS 2011 - 140th Annual Meeting & Exhibition CY - San Diego, CA, USA DA - 27.02.2011 KW - CCS KW - Steel KW - Corrosion KW - Carbon Capture and Storage PY - 2011 DO - https://doi.org/10.1002/9781118062173.ch102 VL - 3 IS - 0807 SP - 807 EP - 814 AN - OPUS4-23472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - The role of surface texture on the corrosion fatigue behavior of high alloyed stainless steel exposed to saline aquifer water environment JF - International journal of materials science and engineering N2 - Corrosion fatigue specimen with different surfaces (technical surfaces after machining and polished surfaces) of high alloyed martensitic stainless steel X46Cr13 (1.4043) and duplex stai nless steel X2CrNiMoN22 3 2 (1.4462) were compared at load amplitudes from 175 MPa to 325 MPa in the geothermal brine of the N orthern German Basin at 98 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO 3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness . At high stress amplitudes above 275 MPa technical surfaces (P50% at σa 300 MPa=5 × 10 5 ) resulted in more cycles to failure than polished (P50% at σa 300 MPa=1.5 × 10 5 ). The greater slope coefficient for technical surfaces k = 19.006 compared to polished surfaces k =8.78 demonstrate s earlier failure at given stress amplitude σa . KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2019 DO - https://doi.org/10.17706/ijmse SN - 2315-4527 VL - 7 IS - 2 SP - 26 EP - 33 PB - IAP - International Academy Publishing CY - San Bernardino, CA AN - OPUS4-50365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolthusen, Helmut A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Effect of heat treatment of injection pipe steels on the reliability of a saline aquifer water CCS-site in the Northern German basin T2 - GHGT-12 - Greenhouse gas control technologies conference N2 - Samples of differently heat treated high alloyed stainless injection-pipe steels AISI 420 X46Cr13, AISI 420J X20Cr13 as well as X5CrNiCuNb16-4 AISI 630 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2- saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Corrosion rates and scale growth are lowest after long term exposure for steels hardened and tempered at 600 to 670 °C and pits - indicating local corrosion- decrease in diameter but increase in number as a function of carbon content of the steel. Martensitic microstructure is preferred with respect to this particular CCS-site. T2 - GHGT-12 - Greenhouse gas control technologies conference CY - Austin, TX, USA DA - 05.10.2014 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-319433 DO - https://doi.org/10.1016/j.egypro.2014.11.609 SN - 1876-6102 N1 - Serientitel: Energy Procedia – Series title: Energy Procedia VL - 63 SP - 5762 EP - 5772 PB - Elsevier Ltd. AN - OPUS4-31943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Wolthusen, Helmut A1 - Zastrow, Philip A1 - Kranzmann, Axel ED - Jha, A. ED - Wang, C. ED - Neelameggham, N.R. ED - Guillen, D.P. ED - Li, L. ED - Belt, C.K. ED - Kirchain, R. ED - Spangenberger, J.S. ED - Johnson, F. ED - Gomes, A.J. ED - Pandey, A. ED - Hosemann, P. T1 - Evaluation of heat treatment performance of potential pipe steels in CCS-environment T2 - Energy Technology 2015: Carbon Dioxide Management and Other Technologies N2 - To resist the corrosive geothermal environment during carbon capture and storage CCS -such as: heat, pressure, salinity of the aquifer, CO2-partial pressure, properties of pipe steels-require certain specification. For evaluation samples of differently heat treated high alloyed stainless injection-pipe steels AISI 420 X46Cr13, AISI 420J X20Cr13 as well as X5CrNiCuNb16–4 AISI 630 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h up to 8000 h in a CO2-saturated synthetic aquifer environment similar to a possible geological situation in the northern German Basin. Corrosion rates and scale growth are lowest after long term exposure for steels hardened and tempered at 600 °C to 670 °C and pits -indicating local corrosion- decrease in diameter but increase in number as a function of carbon content of the steel. Martensitic microstructure is preferred with respect to these particular conditions. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - High temperature KW - High pressure PY - 2015 SN - 978-1-119-08240-8 DO - https://doi.org/10.1002/9781119093220.ch2 SP - 15 EP - 22 PB - Wiley AN - OPUS4-34717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Zastrow, Philip A1 - Kranzmann, Axel T1 - Influence of heat treatment on the corrosion behaviour of stainless steels during CO2-sequestration into saline aquifer JF - International Journal of Greenhouse Gas Control N2 - The appropriate strength of steels used for saline aquifer carbon capture and storage sites (CCS) is usually achieved by applying heat treatments. Thus, heat treatment influences the corrosion resistance for injection pipe steels with 13% chromium and different carbon content: 1.4034/X46Cr13 and 1.4021/X20Cr13 in CO2 saturated saline aquifer water at 60 °C, 1 and 100 bar. X46Cr13 shows better corrosion resistance with respect to corrosion rate, number of pits and maximum intrusion depth. Low corrosion rates are obtained for steels with martensitic microstructures exposed to supercritical CO2 at 100 bar, whereas normalized steels show better corrosion resistance at ambient pressure. KW - Steel KW - Heat treatment KW - CO2 injection KW - Carbon capture and storage (CCS) KW - Corrosion PY - 2013 DO - https://doi.org/10.1016/j.ijggc.2013.02.016 SN - 1750-5836 VL - 15 SP - 213 EP - 224 PB - Elsevier Ltd. CY - New York, NY [u.a.] AN - OPUS4-27994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk A1 - Bohraus, Stefan A1 - Bäßler, Ralph A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion behavior of steels for CO2 injection JF - Process safety and environmental protection N2 - The process chain for Carbon Capture and Sequestration (CCS) includes tubing for injection of CO2 into saline aquifers. The compressed CO2 is likely to contain specific impurities; small concentrations of SO2 and NO2 in combination with oxygen and humidity are most harmful. In addition, CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection has to ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. In this comprehensive paper the investigated materials range from low-alloy steels and 13% Cr steels up to high-alloy materials. Electrochemical tests as well as long term exposure tests were performed in CO2, in brine and combination of both; pressure was up to 100 bar, temperature up to 60 °C. Whereas the CO2 stream itself can be handled using low alloy steels, combinations of CO2 and brine require more resistant materials to control the strong tendency to pitting corrosion. The corrosion behavior of heat-treated steels depends on factors such as microstructure and carbon content. For different sections of the injection tube, appropriate materials should be used to guarantee safety and consider cost effectiveness. KW - CCS KW - Injection tubing KW - Corrosion KW - Safety KW - Carbon steel KW - High alloy steel KW - Saline fluid KW - Supercritical CO2 PY - 2014 DO - https://doi.org/10.1016/j.psep.2013.07.002 SN - 0957-5820 SN - 1744-3598 VL - 92 IS - 1 SP - 108 EP - 118 PB - Elsevier CY - Amsterdam AN - OPUS4-28966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -