TY - CONF A1 - Bork, Claus-Peter A1 - Wolf, Marcus A1 - Pfennig, A. A1 - Trenner, S. A1 - Wiegand, Reiner T1 - Comparison between X5CrNiCuNb16-4 and X46Cr13 under corrosion fatigue N2 - In geothermal power plants materials e.g. pumps are exposed to extremely corrosive thermal water. This results in corrosion fatigue and so inevitably the reduction of the lifetime of these components. Also in the field of the carbon dioxide storage technology (carbon capture and storage CCS) components are exposed to a corrosive environment and mechanical stress. In order to gain knowledge upon the corrosion fatigue strength of materials a corrosion chamber for "in situ" conditions was designed and successfully applied.Two different steels X46Cr13 and X5CrNiCuNb16-4 have been tested and their corrosion fatigue behavior was compared. To simulate the frequency of operating pumps (30 – 40 Hz) a resonant testing machine was used. In addition technical CO2 was introduced into the closed system at a rate close to 9 L/h to keep stable environmental conditions. The samples have a surface roughness of Rz = 4 to simulate technical machined surfaces. The calculated tensile strength of X46Cr13 with soft annealed microstructure (coagulated cementite in ferrite-perlite matrix) is about 680 MPa and the yield strength is about 345 MPa. The tensile strength of X5CrNiCuNb16-4 is about 1078 MPa and the yield strength about 928 MPa. Testing parameters are: corrosion media: saline aquifer water (Stuttgart Aquifer) temperature of the brine at 60 °C and load ratio of R=-1. For X46Cr13 a stress amplitude between 160 MPa to 270 MPa and for X5CrNiCuNb16-4 a stress amplitude between 150 to 500 was chosen. Cycles until crack initiation differ strongly and were found to start at 5 x 104 up to 12.5 x 106 cycles.X46Cr13 has reached a maximum number of cycles (12.5 x 106) at a stress amplitude of 173 MPa. X5CrNiCuNb16-4 has reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa. The range of scatter for X5CrNiCuNb16-4 is very high (1:34) in comparison the range of scatter for X46Cr13 (1:3.5). T2 - Corrosion 2014 CY - San Antonio, TX, USA DA - 09.03.2014 KW - Steel KW - Corrosion chamber KW - Geothermal power KW - CCS KW - Corrosion fatigue PY - 2014 SP - Paper 3776, 1 EP - 6 PB - NACE AN - OPUS4-31085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Oder, Gabriele A1 - Göbel, Artur A1 - Hesse, Rene A1 - Pfennig, A. A1 - Bettge, Dirk T1 - Entwicklung eines automatisierten 3D-Metallographie-Systems und erste Beispiele für die Anwendung in der Gefüge-Analyse T1 - Development of an automated 3D metallography system and some first application examples in microstructural analysis N2 - Die klassische Metallographie basiert auf Abbildungen einzelner Schliffebenen und kann auf räumliche Formen und Anordnungen des Gefüges nur bedingt schließen. Die Idee, aus metallographischen Serienschliffen dreidimensionale Gefügestrukturen zu rekonstruieren, ist daher naheliegend und nicht neu. Allerdings ist der Aufwand, in Handarbeit viele Einzel-Schliffe zu präparieren und zu Bildstapeln zusammenzusetzen, sehr hoch und steht einer häufigen Anwendung entgegen. Deshalb wird an der BAM ein Roboter-gestütztes 3D-Metallographie-System entwickelt, das an einer Schliffprobe die Schritte Präparation und Bildeinzug vollautomatisch mit vielen Wiederholungen ausführt. Die Präparation umfasst Schleifen, Polieren und optional Ätzen der Schlifffläche, der Bildeinzug autofokussierte lichtmikroskopische Aufnahmen bei mehreren Vergrößerungsstufen. Der erhaltene Bildstapel wird anschließend vorverarbeitet, segmentiert und in ein 3D-Modell umgesetzt, das einer mikrotomographischen Aufnahme ähnelt, allerdings mit besserer lateraler Auflösung bei großem Volumen. Im Gegensatz zu tomographischen Verfahren besteht die Möglichkeit der Kontrastierung durch klassische chemische Ätzung. Die Integration eines REMs ist geplant. Bislang durchgeführte Arbeiten verdeutlichen die Möglichkeiten der Darstellung von Heißgas-Korrosionsschichten, Grauguss-Werkstoffen und Keramik-basierten mikroelektronischen Strukturen (Vias). N2 - Traditional metallography relies on the imaging of individual section planes. However, conclusions as to spatial shapes and microstructural arrangements can only be drawn to a limited extent. The idea to reconstruct three-dimensional microstructures from metallographic serial sections is therefore obvious and not at all new. However, the manual process of preparing a great number of individual sections and assembling them into image stacks is time-consuming and laborious and therefore constitutes an obstacle to frequent use. This is why the Federal Institute for Materials Research and Testing, or BAM for short (Bundesanstalt für Materialforschung und -prüfung), is developing a robot-assisted 3D metallography system performing the tasks of preparation and image acquisition on a metallographic section fully automatically and repeatedly. Preparation includes grinding, polishing and optional etching of the section surface. Image acquisition is performed using a light optical microscope with autofocus at several magnification levels. The obtained image stack is then pre-processed, segmented and converted to a 3D model resembling a microtomographic image, but with a higher lateral resolution when large volumes are sampled. As opposed to tomographic techniques, it is possible to perform traditional chemical etching for contrasting. The integration of a SEM is in the planning stages. Studies conducted so far have demonstrated the possibility of visualizing hot gas corrosion layers, grey cast irons and ceramic-based microelectronic structures (vias). KW - 3D-Metallographie KW - Gefügeanalyse KW - Serienschnitte KW - Gefügerekonstruktion KW - 3D metallography KW - Microstructure analysis KW - Serial sectioning KW - Microstrucure reconstruction PY - 2023 U6 - https://doi.org/10.1515/pm-2023-0057 SN - 0032-678X VL - 60 IS - 10 SP - 676 EP - 691 PB - De Gruyter CY - Berlin/Boston AN - OPUS4-58593 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Bork, Claus-Peter A1 - Wolf, Marcus T1 - Design of a high pressure system for in-situ tests on the corrosion fatigue of metallic materials N2 - In geothermal power plants pumps are exposed to corrosive and oscillating loads. This leads to corrosion fatigue and reduces the lifetime of certain components. Usually underwater power pumps are placed inside the borehole. In this case an installation depth of 600 to 800 meters below ground level is typical. In these depths an additional load due to high pressure and high temperature is introduced which is based on geothermal brine. Therefore the material which is used for the pump is steel.For fatigue testing at loads existing in deep geological layers an appropriate system for fatigue tests under in-situ conditions was set up. The requirements of the design are: temperature of the corrosion medium of 200 °C pressure of 200 bars and the complete immersion of the specimen in flowing corrosion medium containing mixtures of corrosive gasses during the entire test period.The test system has three main components the corrosion chamber the heating module and the reservoir. It is important that the corrosion chamber is only fixed onto the specimen which allows for highest flexibility of the test system operational in many different test machines. The heating module heats the corrosion medium up to 200 °C. The reservoir make sure that the volume of the corrosion medium satisfies requirements of the DIN 50905 Part 1 is conformed providing minimum required corrosive medium of 10 ml/cm² in relation to the sample surface.This innovative fatigue test system aims at performing in- situ fatigue corrosion tests simultaneously at high pressure and high temperature in liquid and gaseous corrosive environment. Results from the tests will allow determining the fatigue life of several materials influenced by pressure and temperature under corrosive conditions. T2 - Corrosion 2014 CY - San Antonio, TX, USA DA - 09.03.2014 KW - High pressure KW - Corrosion fatigue KW - Corrosion chamber PY - 2014 SP - Paper 3775, 1 EP - 6 AN - OPUS4-31086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Gröber, A. A1 - Kranzmann, Axel T1 - The Role of Surface Texture on the Corrosion Behavior of High Alloyed Steel Exposed to Saline Aquifer Water Environments N2 - Coupons of X5CrNiCuNb16-4 that may be used as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water similar to the conditions in the Northern German Basin at ambient pressure and 60 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - High alloyed steel KW - Pitting KW - Surface KW - Roughness KW - CO2 PY - 2019 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-50375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Gröber, A. A1 - Simkin, Roman A1 - Kranzmann, Axel T1 - Influence of Surface Quality on the Corrosion and Corrosion Fatigue Behavior of High Alloyed Steels Exposed to Different Saline Aquifer Water Environment N2 - Coupons of X5CrNiCuNb16-4 with different surface roughness that may be utilized as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water simulating the conditions in the Northern German Basin at ambient pressure and 60 °C. Additionally, corrosion fatigue experiments (ambient pressure, technically clean CO2, saline aquifer water of Stuttgart Aquifer) were performed using specimen of X46Cr13 (1.4043, AISI 420C) with regard to the influence of the roughness of technical surfaces on the number of cycles to failure at different stress amplitudes. Specimen of Duplex stainless steel X2CrNiMoN22-3-2 (1.4462) for corrosion fatigue experiments were provided with technical surfaces after machining as well as polished surfaces. Results were obtained at load amplitudes ranging from 175 MPa to 325 MPa in the geothermal brine of the Northern German Basin at 98 °C. The main precipitation phases on the surface as well as within pits reveal carbonates or hydroxides such as siderite (FeCO3) and ferrous hydroxide goethite (FeOOH) independent of the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. Specimen with technical surfaces tested at high stress amplitudes (>275 MPa) lasted longer (cycles to failure: P50% at Sa 300 MPa=5x105) than specimen with polished surfaces (cycles to failure: P50% at Sa 300 MPa=1.5x105). This behavior is emphasized by the slope coefficient (technical surfaces k = 19.006, polished surfaces k=8.78) meaning earlier failure for polished at high stress amplitude Sa. Although rather low scatter ranges (technical surface: TN=1:1.35, polished surface: TN=1.1.95) indicate no change in failure mechanism it may be assumed that at low stress pitting is the initiating crack growth process whereas at high stress amplitudes the formation of micro cracks is reason for crack propagation and failure. KW - High Alloyed Steel KW - Pitting KW - Surface KW - Roughness KW - Corrosion Fatigue PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503772 SN - 2454-5880 VL - 5 IS - 1 SP - 115 EP - 137 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Effect of CO2 and pressure on the stability of steels with different amounts of chromium in saline water N2 - CO2-induced corrosion of casing and tubing steels is a relevant safety issue for compressing emission gasses into deep geological layers (CCS, Carbon Capture and Storage). The influence of CO2 and pressure of the surrounding media on steels is demonstrated in laboratory experiments providing a corrosive environment similar to a geological onshore CCS-site in the Northern German Basin (T = 60 °C, p = 1 - 100 bar, Stuttgart Aquifer, CO2-flow rate of 3 l/h, 700–8000 h exposure time). Corrosion kinetics and microstructures were characterized using specimens of heat treated 42CrMo4 (1.7225, casing) and soft annealed X46Cr13 (1.4034, tubing). KW - A. Low alloyed steel KW - A. Stainless steel KW - C. Pitting corrosion KW - C. Kinetic parameters KW - B. SEM PY - 2012 U6 - https://doi.org/10.1016/j.corsci.2012.08.041 SN - 0010-938X VL - 65 SP - 441 EP - 452 PB - Elsevier CY - Orlando, Fla. AN - OPUS4-27995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pfennig, A. A1 - Kranzmann, Axel ED - Brebbia, C.A. ED - Longhurst, J.W.S. T1 - The role of pit corrosion in engineering the carbon storage site Ketzing, Germany T2 - Air pollution XVIII CY - Kos, Greece DA - 2010-06-21 KW - CO2-Speicherung KW - Ketzin KW - Korrosion KW - Steel KW - Pipeline KW - Pit corrosion KW - CCS KW - CO2-injection KW - CO2-storage PY - 2010 SN - 978-1-84564-450-5 U6 - https://doi.org/10.2495/AIR100101 SN - 1746-448X SN - 1734-3541 SP - 109 EP - 119 PB - WIT Press AN - OPUS4-21683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545700 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion and Fatigue of Heat Treated Martensitic Stainless Steel 1.4542 used for Geothermal Applications N2 - During capture and storage technology (CCS) as well as in geothermal energy production Steels need to withstand the corrosive environment such as: heat, pressure, salinity of the aquifer and CO2-partial pressure. 1.4542 shows unusual corrosion phenomena, but is still sufficiently resistant in corrosive environments. To better understand its behaviour differently heat treated coupons of 1.4542 and for comparison X20Cr13 and X46Cr13 were kept in the artificial brine of the Northern German Basin at T=60 °C. Ambient pressure as well as p=100 bar for 700 h - 8000 h in water saturated supercritical CO2 and CO2-saturated synthetic aquifer Environment was applied. Fatigue tests were performed via push-pull tests with a series of 30 specimens from 150 MPa to 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). FeCO3 and FeOOH are corrosion products also after dynamic corrosion tests. Martensitic microstructure offers good corrosion resistance in geothermal environment. The S-N-curve showing no typical fatigue strength and very steep slopes of possible fatigue strength for finite life. Possible influencing artefacts, such as Al-inclusions could not be correlated to early rupture despite specimens containing inclusions at the fracture surface and cross section reached lower number of cycles. Applied potential proofed to enhance fatigue life tremendously. KW - High Alloyed Steel KW - Pitting KW - Corrosion Fatigue KW - Corrosion KW - Endurance Limit PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503765 SN - 2454-5880 VL - 5 IS - 1 SP - 138 EP - 158 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Effect of CO2, atmosphere and pressure on the stability of C35CrMo17 stainless steel in laboratory CCS-environment N2 - During carbon sequestration the CO2-induced corrosion of injection pipe steels is a relevant safety issue when emission gasses are compressed into deep geological layers. The reliability of the high alloyed steel X35CrMo17 suitable as injection pipe for the geological onshore CCS-site (Carbon Capture and Storage) in the Northern German Basin, is demonstrated in laboratory experiments in equivalent corrosive environment (T = 60 °CC, p = 1–100 bar, aquifer water, CO2-flow rate of 9 L/h, 700–8000 h exposure time). Corrosion kinetics and microstructure were characterized and compared to other potential injection pipe steels (42CrMo4, X46Cr13, X20Cr13 and X5CrNiCuNb16-4). T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2019 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-50382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -