TY - CONF A1 - Pfennig, A. A1 - Wolf, Marcus A1 - Wiegand, Reiner A1 - Bork, Claus-Peter T1 - New in-situ measurement technique to determine corrosion fatigue in components and pipes under cyclic load T2 - MWWD & IEMES 2012 (Proceedings) N2 - In the field of water pipelines, geothermal energy production as well as carbon capture and storage technology (CCS) materials have to provide a high resistance to corrosion and mechanical stress. The combination of cyclic load and corrosive aqueous environment leads to corrosion fatigue of pipes and components (e.g. pumps) and thus inevitably to the reduction of the lifetime of these components. To estimate the reliability of components from adjusted in-situ-laboratory experiments a corrosion chamber was designed and tested with CO2 saturated corrosive aqueous media flowing at a steady rate. Unique feature of this special chamber is its installation directly onto the sample and thus providing flexible usability in almost every testing machine. This allows simultaneous mechanical loading of the sample, operation at temperatures up to 100 °C and exposure to fluid flow of corrosive liquids and gases. The lifetime reduction of AISI 420C (X46Cr13, 1.4034) is demonstrated at T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2. S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue may be identified as failure cause. T2 - MWWD & IEMES 2012 CY - Budva, Montenegro DA - 22.10.2012 KW - Corrosion fatigue KW - Corrosion chamber KW - S-N-plots KW - Steel KW - In-situ experiment PY - 2012 SN - 978-9944-5566-6-8 SP - 1 EP - 8 AN - OPUS4-28569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bork, Claus-Peter A1 - Wolf, Marcus A1 - Pfennig, A. A1 - Trenner, S. A1 - Wiegand, Reiner T1 - Comparison between X5CrNiCuNb16-4 and X46Cr13 under corrosion fatigue T2 - Corrosion 2014 N2 - In geothermal power plants materials e.g. pumps are exposed to extremely corrosive thermal water. This results in corrosion fatigue and so inevitably the reduction of the lifetime of these components. Also in the field of the carbon dioxide storage technology (carbon capture and storage CCS) components are exposed to a corrosive environment and mechanical stress. In order to gain knowledge upon the corrosion fatigue strength of materials a corrosion chamber for "in situ" conditions was designed and successfully applied.Two different steels X46Cr13 and X5CrNiCuNb16-4 have been tested and their corrosion fatigue behavior was compared. To simulate the frequency of operating pumps (30 – 40 Hz) a resonant testing machine was used. In addition technical CO2 was introduced into the closed system at a rate close to 9 L/h to keep stable environmental conditions. The samples have a surface roughness of Rz = 4 to simulate technical machined surfaces. The calculated tensile strength of X46Cr13 with soft annealed microstructure (coagulated cementite in ferrite-perlite matrix) is about 680 MPa and the yield strength is about 345 MPa. The tensile strength of X5CrNiCuNb16-4 is about 1078 MPa and the yield strength about 928 MPa. Testing parameters are: corrosion media: saline aquifer water (Stuttgart Aquifer) temperature of the brine at 60 °C and load ratio of R=-1. For X46Cr13 a stress amplitude between 160 MPa to 270 MPa and for X5CrNiCuNb16-4 a stress amplitude between 150 to 500 was chosen. Cycles until crack initiation differ strongly and were found to start at 5 x 104 up to 12.5 x 106 cycles.X46Cr13 has reached a maximum number of cycles (12.5 x 106) at a stress amplitude of 173 MPa. X5CrNiCuNb16-4 has reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa. The range of scatter for X5CrNiCuNb16-4 is very high (1:34) in comparison the range of scatter for X46Cr13 (1:3.5). T2 - Corrosion 2014 CY - San Antonio, TX, USA DA - 09.03.2014 KW - Steel KW - Corrosion chamber KW - Geothermal power KW - CCS KW - Corrosion fatigue PY - 2014 SP - Paper 3776, 1 EP - 6 PB - NACE AN - OPUS4-31085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Bork, Claus-Peter A1 - Wolf, Marcus T1 - Design of a high pressure system for in-situ tests on the corrosion fatigue of metallic materials T2 - Corrosion 2014 N2 - In geothermal power plants pumps are exposed to corrosive and oscillating loads. This leads to corrosion fatigue and reduces the lifetime of certain components. Usually underwater power pumps are placed inside the borehole. In this case an installation depth of 600 to 800 meters below ground level is typical. In these depths an additional load due to high pressure and high temperature is introduced which is based on geothermal brine. Therefore the material which is used for the pump is steel.For fatigue testing at loads existing in deep geological layers an appropriate system for fatigue tests under in-situ conditions was set up. The requirements of the design are: temperature of the corrosion medium of 200 °C pressure of 200 bars and the complete immersion of the specimen in flowing corrosion medium containing mixtures of corrosive gasses during the entire test period.The test system has three main components the corrosion chamber the heating module and the reservoir. It is important that the corrosion chamber is only fixed onto the specimen which allows for highest flexibility of the test system operational in many different test machines. The heating module heats the corrosion medium up to 200 °C. The reservoir make sure that the volume of the corrosion medium satisfies requirements of the DIN 50905 Part 1 is conformed providing minimum required corrosive medium of 10 ml/cm² in relation to the sample surface.This innovative fatigue test system aims at performing in- situ fatigue corrosion tests simultaneously at high pressure and high temperature in liquid and gaseous corrosive environment. Results from the tests will allow determining the fatigue life of several materials influenced by pressure and temperature under corrosive conditions. T2 - Corrosion 2014 CY - San Antonio, TX, USA DA - 09.03.2014 KW - High pressure KW - Corrosion fatigue KW - Corrosion chamber PY - 2014 SP - Paper 3775, 1 EP - 6 AN - OPUS4-31086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -