TY - JOUR A1 - Caetano, D. M. A1 - Rabuske, T. A1 - Fernandes, J. A1 - Pelkner, Matthias A1 - Fermon, C. A1 - Cardoso, S. A1 - Ribes, B. A1 - Franco, F. A1 - Paul, J. A1 - Piedade, M. A1 - Freitas, P. P. T1 - High-Resolution Nondestructive Test Probes Based on Magnetoresistive JF - IEEE Transaction on Industrial Electronics N2 - This paper discloses two high-sensitivity probes for Eddy Current Nondestructive Test (NDT) of buried and surface defects. These probes incorporate eight and 32 magnetoresistive sensors, respectively, which are optimized for high sensitivity and spatial resolution. The signal processing and interfacing are carried out by a full-custom application-specific integrated circuit (ASIC). The ASIC signal chain performs with a thermal input-referred noise of 30 nV/√Hz at 1 kHz, with 66 mW of power consumption, in a die with 3.7 × 3.4 mm 2 . NDT results are presented, showing that there is an increase in spatial resolution of surface defects when contrasted to prior art, enabling the probes to resolve defects with diameters of 0.44 mm, pitches of 0.6 mm, and minimum edge distance as low as 0.16 mm. The results also show that the probe for buried defects is a good all-round tool for detection of defects under cladding and multiple-plate flat junctions. KW - ASIC KW - Magnetoresistive sensor KW - Nondestructive testing KW - Eddy current testing KW - High resolution PY - 2019 DO - https://doi.org/10.1109/TIE.2018.2879306 VL - 66 IS - 9 SP - 7326 EP - 7337 PB - IEEE AN - OPUS4-48239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pelkner, Matthias A1 - Ehlers, Henrik T1 - Electromagnetic testing for additive manufacturing N2 - With rising popularity and availability of additive manufacturing (AM), companies mainly in the aerospace sector, set high requirements on quality control of AM parts, especially produced with selective laser melting (SLM). Since it was shown that those parts are prawn to flaws like pores or cracks, every part needs to be tested. Therefore, NDT Methods, like eddy current testing (ET), could help to characterize SLM parts. Research on ET has shown, that offline ET with high spatial resolution MR (magneto resistive) sensor arrays is possible and that flaws as small as 50 µm could be detected while significantly reducing testing time. A first approach on automated online ET method for testing SLM parts is proposed in this contribution. T2 - IIW 2019 CY - Bratislava, Slovakia DA - 08.07.2019 KW - Additive manufacturing KW - Giant magneto resistance KW - Online monitoring KW - Eddy current testing PY - 2019 AN - OPUS4-50244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pelkner, Matthias A1 - Casperson, Ralf A1 - Pohl, Rainer A1 - Munzke, Dorit A1 - Becker, Ben T1 - Eddy current testing of composite pressure vessels JF - International Journal of Applied Electromagnetics and Mechanics N2 - The application of composite pressure vessels is of great interest due to tremendous weight saving. Nevertheless, ageing of CFRP (carbon fiber reinforced plastic) composites pressure vessels underlies complex interactions between metallic liner and composite and is not fully understood yet. One main challenge is the application of appropriate testing methods for detecting the influences of pressure cycles and creep behavior on the material. This contribution presents results achieved by using conventional eddy current testing (ET) and high frequency ET. Here, we could show that also conventional ET with low frequencies are useable to investigate pressure vessels of different material combinations like aluminum-CFRP and synthetics-CFRP. KW - CFRP KW - Eddy current KW - Ageing KW - Composite PY - 2019 DO - https://doi.org/10.3233/JAE-171044 VL - 59 IS - 4 SP - 1221 EP - 1226 PB - IOP Publ. Ltd. AN - OPUS4-47803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -