TY - CONF A1 - Pauli, Jutta A1 - Jäger, Christian T1 - Materialanalytik mittels der Festkörper-NMR: Von Biokeramiken über Polymere bis zu Oberflächenschichten T2 - Abteilungsseminar, Abteilung I, BAM CY - Berlin, Germany DA - 2003-03-01 PY - 2003 AN - OPUS4-3748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jäger, Christian A1 - Hartmann, P. A1 - Barth, S. A1 - Vogel, J. A1 - Pauli, Jutta A1 - Schmauder, H.-P. T1 - NMR und Biomaterialien - Was kann man über plasmagespritzte Apatitschichten und Cellulose lernen? T2 - Kolloquium des SFB 428 CY - Freiburg, Deutschland DA - 2002-12-10 PY - 2002 AN - OPUS4-2127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Pauli, Jutta A1 - Jäger, Christian A1 - Scholz, G. ED - Krämer, V. T1 - Phasentransformationen von anorganisch modifizierten Alumo-Xerogelen T2 - Jahrestagung der Gesellschaft für Thermische Analyse e.V. CY - Augsburg, Deutschland DA - 2003-09-15 PY - 2003 SP - 1 EP - 2 AN - OPUS4-2668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jäger, Christian A1 - Pauli, Jutta A1 - Berger, Georg A1 - Spitzer, Andrea T1 - Entwicklung neuartiger Knochenersatzwerkstoffe und strukturelle Charakterisierung mittels der 31P-NMR-Spektroskopie T2 - Tagung "Tag der Chemie" CY - Berlin, Deutschland DA - 2002-12-04 PY - 2002 AN - OPUS4-1900 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peuker, Christel A1 - Reinholz, Uwe A1 - Jäger, Christian A1 - Pauli, Jutta A1 - Geißler, Heinz T1 - Extinction coefficients of the OH bands in the IR spectra of basic and water-enriched silicate and aluminosilicate glasses PY - 2003 SN - 0927-4472 VL - 76 IS - 5 SP - 227 EP - 233 PB - Elsevier CY - Amsterdam AN - OPUS4-2781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berger, Georg A1 - Gildenhaar, Renate A1 - Pauli, Jutta A1 - Marx, Heidi T1 - Preparation and Characterization of New Self-Setting Calcium Phosphate Cements Based on Alkali Containing Orthophosphates KW - P-31-NMR Investigation KW - Ca2KNa(PO4)2 KW - Calcium Alkali Orthophosphates KW - Calcium Phosphate Cement KW - Self-Setting Cement PY - 2005 SN - 1013-9826 VL - 284-286 SP - 121 EP - 124 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-5493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adorjan, I. A1 - Rosenau, Th. A1 - Potthast, A. A1 - Kosma, P. A1 - Mereiter, K. A1 - Pauli, Jutta A1 - Jäger, Christian T1 - Crystal and molecular structure of methyl 4-O-methyl-beta-D-ribo-hex-3-ulopyranoside N2 - Methyl 4-O-methyl-?-Image-ribo-hex-3-ulopyranoside (2), a model compound for partially oxidized anhydroglucose units in cellulose, was crystallized from CHCl3/n-hexane by vapor diffusion to give colorless plates. Crystal structure determination revealed the monoclinic space group P21 with Z=2C8H14O6 and unit cell parameters of a=8.404(2), b=4.5716(10), c=13.916(3) Å, and ?=107.467(4)°. The structure was solved by direct methods and refined to R=0.0476 for 1655 reflections and 135 parameters. The hexulopyranoside occurs in a distorted chair conformation. Both hydroxyls are involved in hydrogen bonding and form zigzag bond chains along the b-axis. One of the two hydrogen bonds is bifurcated. The solid-state 13C NMR spectrum of 2 exhibits eight carbon resonances, with well-separated signals for the two methoxyls (1-OMe: 55.72 ppm, 4-OMe: 61.25 ppm) and a keto resonance with relatively large downfield shift (206.90 ppm). Differences in the C-4 and the methoxyls’ chemical shifts in the solid and liquid states were found KW - Crystal structure KW - Solid-state NMR KW - Cellulose KW - Carbonyl groups PY - 2004 U6 - https://doi.org/10.1016/j.carres.2004.01.006 SN - 0008-6215 SN - 1873-426X VL - 339 IS - 4 SP - 795 EP - 799 PB - Elsevier CY - Amsterdam AN - OPUS4-5341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Vag, T. A1 - Resch-Genger, Ute A1 - Haag, R. A1 - Werner, A. A1 - Hilger, I. T1 - Evaluierung neuer Fluoreszenzfarbstoffe für die in-vivo-Diagnostik T2 - 88. Deutscher Röntgenkongress CY - Berlin, Germany DA - 2007-05-16 PY - 2007 AN - OPUS4-13877 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mackie, I.D. A1 - Röhrling, J. A1 - Gould, R.O. A1 - Pauli, Jutta A1 - Jäger, Christian A1 - Walkinshaw, M. A1 - Potthast, A. A1 - Rosenau, Th. A1 - Kosma, P. T1 - Crystal and molecular structure of methyl 4-O-methyl-beta-D-glucopyranosyl-(1->4)-beta-D-glucopyranoside N2 - The cellulose model compound methyl 4-O-methyl-?-Image-glucopyranosyl-(1?4)-?-Image-glucopyranoside (6) was synthesised in high overall yield from methyl ?-Image-cellobioside. The compound was crystallised from methanol to give colourless prisms, and the crystal structure was determined. The monoclinic space group is P21 with Z=2 and unit cell parameters a=6.6060 (13), b=14.074 (3), c=9.3180 (19) Å, ?=108.95(3)°. The structure was solved by direct methods and refined to R=0.0286 for 2528 reflections. Both glucopyranoses occur in the 4C1 chair conformation with endocyclic bond angles in the range of standard values. The relative orientation of both units described by the interglycosidic torsional angles [? (O-5?---C-1?---O-4---C-4) -89.1°, phi (C-1?---O-4---C-4---C-5) -152.0°] is responsible for the very flat shape of the molecule and is similar to those found in other cellodextrins. Different rotamers at the exocyclic hydroxymethyl group for both units are present. The hydroxymethyl group of the terminal glucose moiety displays a gauche–trans orientation, whereas the side chain of the reducing unit occurs in a gauche–gauche conformation. The solid state 13C NMR spectrum of compound 6 exhibits all 14 carbon resonances. By using different cross polarisation times, the resonances of the two methyl groups and C-6 carbons can easily be distinguished. Distinct differences of the C-1 and C-4 chemical shifts in the solid and liquid states are found. KW - Crystal structure KW - Cellulose KW - Methyl cellobioside KW - Solid state NMR PY - 2002 U6 - https://doi.org/10.1016/S0008-6215(01)00299-3 SN - 0008-6215 SN - 1873-426X VL - 337 IS - 2 SP - 161 EP - 166 PB - Elsevier CY - Amsterdam AN - OPUS4-11023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute A1 - Licha, K. T1 - Analytical and Spctroscopic tools for the Design of Highly Flourescent Conjugates T2 - ANAKON 2013 CY - Essen, Germany DA - 2013-03-04 PY - 2013 AN - OPUS4-28471 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mathejczyk, J. A1 - Pauli, Jutta A1 - Dullin, C. A1 - Napp, J. A1 - Tietze, L.-F. A1 - Kessler, H. A1 - Resch-Genger, Ute A1 - Alves, F. T1 - Spectroscopically well-characterized RGD optical probe as a prerequisite for lifetime-gated tumor imaging N2 - Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing ανβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine–glycine–aspartic acid–D-phenylalanine–lysine (RGDfK) peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of ανβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probés fluorescence lifetime under application-relevant conditions. KW - Time domain near-infrared fluorescence (NIRF) imaging KW - Fluorescence KW - Lifetime KW - Quantum yield KW - RGD-Cy5.5 KW - Spectroscopic analysis PY - 2011 U6 - https://doi.org/10.2310/7290.2011.00018 SN - 1535-3508 SN - 1536-0121 VL - 10 IS - 6 SP - 469 EP - 480 PB - Decker CY - Hamilton, Ont. AN - OPUS4-25711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Grabolle, Markus A1 - Behnke, Thomas A1 - Mathejczyk, J. A1 - Hamann, F. A1 - Alves, F. A1 - Hilger, I. A1 - Resch-Genger, Ute ED - Achilefu, S. ED - Raghavachari, R. T1 - Dye-biomolecule conjugates and NIR-fluorescent particles for targeting of disease-related biomarkers N2 - Indispensable for fluorescence imaging are highly specific and sensitive molecular probes that absorb and emit in the near infrared (NIR) spectral region and respond to or target molecular species or processes. Here, we present approaches to targeted fluorescent probes for in vivo imaging in the intensity and lifetime domain exploiting NIR dyes. Screening schemes for the fast identification of suitable fluorophores are derived and design criteria for highly emissive optical probes. In addition, as a signal amplification strategy that enables also the use of hydrophobic NIR fluorophores as fluorescent reporters, first steps towards versatile strategies for the preparation of NIR-fluorescent polymeric particles are presented that can be utilized also for the design of targeted and analyte-responsive probes. KW - Fluorescence KW - Fluorescence lifetime imaging KW - Near-infrared KW - NIR KW - Cyanine dye KW - Cancer KW - In vivo imaging KW - Aggregation KW - Nanoparticle PY - 2011 U6 - https://doi.org/10.1117/12.876828 SN - 1605-7422 N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 7910 SP - 791014-1 EP - 791014-15 AN - OPUS4-24353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Pauli, Jutta A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared N2 - There is an increasing interest in chromophores absorbing and emitting in the near-infrared (NIR) spectral region, e.g., for applications as fluorescent reporters for optical imaging techniques and hence, in reliable methods for the characterization of their signal-relevant properties like the fluorescence quantum yield (Φf) and brightness. The lack of well established Φf standards for the NIR region in conjunction with the need for accurate Φf measurements in transparent and scattering media encouraged us to built up an integrating sphere setup for spectrally resolved measurements of absolute fluorescence traceable to radiometric scales. Here, we present the design of this setup and its characterization and validation including an uncertainty budget for the determination of absolute Φf in the visible and NIR. To provide the basis for better measurements of Φf in the spectral window from ca. 600 to 1000 nm used, e.g., for optical imaging, the absolute Φf of a set of NIR chromophores covering this spectral region are measured and compared to relative values obtained using rhodamine 101 as Φf standard. Additionally, the absolute Φf values of some red dyes that are among the most commonly used labels in the life sciences are presented as well as the absolute quantum yield of an optical probe for tumor imaging. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere KW - NIR KW - Standards KW - Quantum yield standards PY - 2012 U6 - https://doi.org/10.1021/ac2021954 SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 3 SP - 1345 EP - 1352 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Brehm, Robert A1 - Pauli, Jutta A1 - Dees, F.M. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Determination of the labeling density of fluorophore-biomolecule conjugates with absorption spectroscopy N2 - Dye–biomolecule conjugation is frequently accompanied by considerable spectral changes of the dye’s absorption spectrum that limit the use of the common photometrical method for the determination of labeling densities. Here, we describe an improvement of this method using the integral absorbance of the dye instead of its absorbance at the long wavelength maximum to determine the concentration of the biomolecule-coupled dye. This approach is illustrated for three different cyanine dyes conjugated to the antibody IgG. KW - Fluorescent dye KW - Aggregation KW - Dimerization KW - Fluorophore-labeled antibodies KW - Labeling density KW - Dye-to-protein ratio KW - Absorption PY - 2012 U6 - https://doi.org/10.1021/bc2003428 SN - 1043-1802 SN - 1520-4812 VL - 23 IS - 2 SP - 287 EP - 292 CY - Washington, DC AN - OPUS4-25527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mathejczyk, J.E. A1 - Pauli, Jutta A1 - Dullin, C. A1 - Resch-Genger, Ute A1 - Alves, F. A1 - Napp, J. T1 - High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared flurorescence probe N2 - We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases. KW - Optical probe KW - pH sensing KW - Cyanine KW - In vivo near-infrared fluorescence imaging KW - Fluorescence lifetime imaging KW - Breast tumor monitoring KW - Herceptin PY - 2012 U6 - https://doi.org/10.1117/1.JBO.17.7.076028 SN - 1083-3668 SN - 1560-2281 VL - 17 IS - 7 SP - 076028-1 - 076028-9 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-26297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Jäger, Christian A1 - Kraus, Werner A1 - Reck, Günter A1 - Berger, Georg T1 - Ambiguities of comparative XRD and NMR studies of crystalline calcium phosphates T2 - 25. Jahrestagung der Fachgruppe "Magnetische Resonanzspektroskopie" CY - Leipzig, Germany DA - 2003-09-30 PY - 2003 AN - OPUS4-4736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisy, M.-R. A1 - Goermar, A. A1 - Thomas, C. A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Kaiser, W.A. A1 - Hilger, I. T1 - In Vivo Near-infrared Fluorescence Imaging of Carcinoembryonic Antigen-expressing Tumor Cells in Mice N2 - Purpose: To prospectively depict carcinoembryonic antigen (CEA)-expressing tumors in mice with a high-affinity probe consisting of a near-infrared (NIR) fluorochrome and the clinically used anti-CEA antibody fragment arcitumomab. Materials and Methods: This study was approved by the regional animal committee. By coupling a NIR fluorescent (NIRF) cyanine dye (DY-676) to a specific antibody fragment directed against CEA (arcitumomab) and a nonspecific IgG Fab fragment, a bio-optical high-affinity fluorescent probe (anti-CEA–DY-676) and a low-affinity fluorescent probe (FabIgG–DY-676) were designed. The dye-to-protein ratios were determined, and both probes were tested for NIRF imaging in vitro on CEA-expressing LS-174T human colonic adenocarcinoma cells and CEA-nonexpressing A-375 human melanoma cells by using a bio-optical NIR small-animal imager. In vivo data of xenografted LS-174T and A-375 tumors in mice (n = 10) were recorded and statistically analyzed (Student t test). Results: The dye-to-protein ratios were determined as 3.0–3.5 for both probes. In vitro experiments revealed the specific binding of the anti-CEA–DY-676 probe on CEA-expressing cells as compared with CEA-nonexpressing cells; the FabIgG–DY-676 probe showed a markedly lower binding affinity to cells. In vivo LS-174T tumors xenografted in all mice could be significantly distinguished from A-375 tumors with application of the anti-CEA–DY-676 but not with that of the FabIgG–DY-676 at different times (2–24 hours, P < .005) after intravenous injection of the probes. Semiquantitative analysis revealed maximal fluorescence signals of anti-CEA–DY-676 to CEA-expressing tumors about 8 hours after injection. Conclusion: Findings of this study indicate the potential use of the high-affinity probe anti-CEA–DY-676 for specific NIRF imaging in in vivo tumor diagnosis. KW - Fluorescence spectroscopy KW - NIR fluorescent dye KW - NIRF imaging KW - Antibogy fragment arcitumomab KW - Carcinoembryonic antigen PY - 2008 U6 - https://doi.org/10.1148/radiol.2472070123 SN - 0033-8419 SN - 1527-1315 VL - 247 IS - 3 SP - 779 EP - 787 PB - Radiological Society of North America CY - Oak Brook, Ill. AN - OPUS4-17629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Malz, Frank A1 - Pauli, Jutta A1 - Jäger, Christian A1 - Reinsch, Stefan A1 - Scholz, G. T1 - Aluminum speciation and thermal evolution of aluminas resulting from modified Yoldas sols N2 - Aluminas resulting from sols prepared via a modified Yoldas procedure were studied with differential thermal analysis (DTA), differential thermal gravimetrie (DTG), 27Al nuclear magnetic resonance (27Al MAS NMR) and X-ray diffraction (XRD) concerning their thermal properties, aluminum speciation and phase content. Hydrolysis of aluminum-sec-butoxide in aluminum nitrate solutions allowed to prepare stable sols with varying NO3-/Al molar ratios, solids contents and pH values. Resulting sols contained different aluminum species including also Al13 polycations. Sol preparation conditions also determined aluminum speciation in solid products obtained after thermal treatments of gels obtained from these sols. Al13 polycations and AlO5 species were found to play an important role for thermally induced transformation from amorphous products via eta-Al2O3 to alpha-Al2O3. Intermediately formed eta-Al2O3 promotes the phase transformation to alpha-Al2O3. KW - Alumina KW - Modified Yoldas sols KW - 27Al nuclear magnetic resonance KW - Differential thermal analysis KW - X-ray diffraction PY - 2007 U6 - https://doi.org/10.1016/j.jssc.2007.06.018 SN - 0022-4596 SN - 1095-726X VL - 180 IS - 9 SP - 2409 EP - 2419 PB - Elsevier CY - San Diego, Calif. AN - OPUS4-16189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Lisy, M.-R. A1 - Hilger, I. A1 - Kaiser, W. T1 - Influence of biological systems on the intensity of the light emission of fluorophores T2 - Molekulare Bildgebung CY - Kiel, Germany DA - 2007-07-05 PY - 2007 AN - OPUS4-16404 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Vag, T. A1 - Haag, R. A1 - Hilger, I. A1 - Kaiser, W. T1 - Spectroscopic properties of new near infrared dyes for molecular imaging T2 - Molekulare Bildgebung CY - Kiel, Germany DA - 2007-07-05 PY - 2007 AN - OPUS4-16405 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Lisy, M.-R. A1 - Thomas, C. A1 - Kaiser, W. A1 - Hilger, I. T1 - Design and characterization of a new contrast agent for the specific and sensitive detection of tumor via in vivo fluorescence imaging T2 - Method and Application of Fluerescence (MAF10) CY - Salzburg, Austria DA - 2007-09-09 PY - 2007 AN - OPUS4-16406 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Vag, T. A1 - Haag, R. A1 - Kaiser, W. A1 - Hilger, I. T1 - Characterization of a new near infrared dyes for molecular imaging T2 - Method and Application of Fluerescence (MAF10) CY - Salzburg, Austria DA - 2007-09-09 PY - 2007 AN - OPUS4-16407 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Pauli, Jutta A1 - Jäger, Christian T1 - Influence of polyvinylpyrrolidone (PVP) on alumina sols prepared by a modified Yoldas procedure N2 - Al13 polycations containing alumina sols, prepared by a modified Yoldas procedure were mixed with polyvinylpyrrolidone (PVP). Although Al speciation in freshly prepared sols was not affected by PVP addition the decay rate of Al13 polycations was slightly decreased in PVP-containing sols. PVP does not show any influence on particle size and particle growth. The influence of PVP addition on viscosity and flow behavior of modified Yoldas sols depends on their solids content and NO3-/Al molar ratio. KW - ModifiedYoldas sols KW - PVP KW - NMR KW - Rheology KW - Particle size KW - Aging PY - 2008 U6 - https://doi.org/10.1007/s10971-008-1798-9 SN - 0928-0707 SN - 1573-4846 VL - 47 IS - 3 SP - 260 EP - 267 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-17854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Peplinski, Burkhard A1 - Berger, Georg T1 - NMR- und XRD-Charakterisierung von Tricalciumphosphat und alkalihaltigen Calciumphosphaten T2 - AK Biokeramik der DKG/DGM, BAM CY - Berlin, Germany DA - 2005-04-27 PY - 2005 AN - OPUS4-7369 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Pauli, Jutta A1 - Dreßler, Martin A1 - Jäger, Christian A1 - Altenburg, Wolfgang T1 - 27Al NMR Study of Al-Speciation in Aqueous Alumina-Sols N2 - A new method of preparing concentrated alumo-sols, the hydrolysis of Al-tri-sec-butylate in acidic aqueous media at 85°C, was studied in detail by varying the H2O/Al- and NO3 -/Al-ratios in wide ranges. The components of the sols were characterized by 27Al NMR spectroscopy. The pH-value depends on both the chosen H2O/Al- and NO3 -/Al-ratio and on the aging time of the sols and reflects the composition of the sols. Al13 polycations were detected in sols with a pH-value between 3.0 and 3.7. As a new result its presence was shown by NMR below 3.4. The Al13 content of the sols increased with pH and the maximum fraction of Al13 polycations was detected in the sol with the highest pH (3.7). Nearly 65% of the entire aluminium content of this solution is bound in the Al13 polycations. Hence, a new synthetic method for the preparation of Al13 ions containing sols was developed. Aging studies of the sols showed, that the Al13 polycations were more stable in solutions with higher pH-value. Al13 polycations were detected after an aging time of four months only in sols with a pH-value of 3.7. Tempering the aged sols at 40° to 80°C caused formation of Al13 and also of Al30 polycations. KW - Alumo-sol KW - Al13 polycations KW - Al-27 NMR spectroscopy PY - 2006 SN - 0928-0707 SN - 1573-4846 VL - 38 IS - 1 SP - 25 EP - 35 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-12350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Resch-Genger, Ute A1 - Licha, K. A1 - Welker, P. T1 - Sharpening the fluorescence properties of cyanine bioconjugates: a novel series of highly sulfonated pentamethine cyanines T2 - ESMI 2013 CY - Turin, Italy DA - 2013-05-27 PY - 2013 AN - OPUS4-28955 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Licha, K. A1 - Berkemeyer, Janis Manuel A1 - Grabolle, Markus A1 - Spieles, Monika A1 - Wegner, N. A1 - Welker, P. A1 - Resch-Genger, Ute T1 - New fluorescent labels with tunable hydrophilicity for the rational design of bright optical probes for molecular imaging N2 - The rational design of bright optical probes and dye–biomolecule conjugates in the NIR-region requires fluorescent labels that retain their high fluorescence quantum yields when bound to a recognition unit or upon interaction with a target. Because hydrophilicity-controlled dye aggregation in conjunction with homo-FRET presents one of the major fluorescence deactivation pathways in dye–protein conjugates, fluorescent labels are required that enable higher labeling degrees with minimum dye aggregation. Aiming at a better understanding of the factors governing dye–dye interactions, we systematically studied the signal-relevant spectroscopic properties, hydrophilicity, and aggregation behavior of the novel xS-IDCC series of symmetric pentamethines equipped with two, four, and six sulfonic acid groups and selected conjugates of these dyes with IgG and the antibody cetuximab (ctx) directed against the cancer-related epidermal growth factor (EGF) receptor in comparison to the gold standard Cy5.5. With 6S-IDCC, which displays a molar absorption coefficient of 190 000 M–1 cm–1 and a fluorescence quantum yield (Φf) of 0.18 in aqueous media like PBS and nearly no aggregation, we could identify a fluorophore with a similarly good performance as Cy5.5. Bioconjugation of 6S-IDCC and Cy5.5 yielded highly emissive targeted probes with comparable Φf values of 0.29 for a dye-to-protein (D/P) ratio <1 and a reduced number of protein-bound dye aggregates in the case of 6S-IDCC. Binding studies of the ctx conjugates of both dyes performed by fluorescence microscopy and FACS revealed that the binding strength between the targeted probes and the EGF receptor at the cell membrane is independent of D/P ratio. These results underline the importance of an application-specific tuning of dye hydrophilicity for the design of bright fluorescent reporters and efficient optical probes. Moreover, we could demonstrate the potential of fluorescence spectroscopy to predict the size of fluorescence signals resulting for other fluorescence techniques such as FACS. KW - Cyanine KW - Cetuximab KW - IgG KW - Protein labeling KW - Fluorescence quantum yield KW - Hydrophilicity KW - Dimerization constant PY - 2013 U6 - https://doi.org/10.1021/bc4000349 SN - 1043-1802 SN - 1520-4812 VL - 24 IS - 7 SP - 1174 EP - 1185 CY - Washington, DC AN - OPUS4-29076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Napp, J. A1 - Streng, Julia A1 - Alves, F. A1 - Resch-Genger, Ute T1 - Brilliant and Functional Herceptin Conjugates with a Remarkably High Number of Bound Fluorophores T2 - MOBI 2013 CY - Heidelberg, Germany DA - 2013-10-28 PY - 2013 AN - OPUS4-29576 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Licha, K. A1 - Resch-Genger, Ute T1 - Design of Highly Fluorescent Conjugates T2 - MOBI 2013 CY - Heidelberg, Germany DA - 2013-10-28 PY - 2013 AN - OPUS4-29577 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Vag, T. A1 - Haag, R. A1 - Spieles, Monika A1 - Wenzel, M. A1 - Kaiser, W.A. A1 - Resch-Genger, Ute A1 - Hilger, I. T1 - An in vitro characterization study of new near infrared dyes for molecular imaging N2 - The spectroscopic properties, stability, and cytotoxicity of series of cyanine labels, the dyes DY-681, DY-731, DY-751, and DY-776, were studied to identify new tools for in vivo fluorescence imaging and to find substitutes for DY-676 recently used by us as fluorescent label in a target-specific probe directed against carcinoembryonic antigen (CEA). This probe enables the selective monitoring of CEA-expressing tumor cells in mice, yet displays only a low fluorescence quantum yield and thus, a non-optimum sensitivity. All the DY dyes revealed enhanced fluorescence quantum yields, a superior stability, and a lower cytotoxicity in comparison to clinically approved indocyanine green (ICG). With DY-681 and far-red excitable DY-731 and DY-751, we identified three dyes with improved properties compared to DY-676 and ICG. KW - In vivo fluorescence imaging KW - NIR fluorophore KW - Cytotoxicity KW - Stability KW - Fluorescence quantum yield KW - Cyanine PY - 2009 U6 - https://doi.org/10.1016/j.ejmech.2009.01.019 SN - 0009-4374 SN - 0223-5234 VL - 44 IS - 9 SP - 3496 EP - 3503 PB - EDIFOR CY - Paris AN - OPUS4-19712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heckmann, A. A1 - Dümmler, S. A1 - Pauli, Jutta A1 - Margraf, M. A1 - Köhler, J. A1 - Stich, D. A1 - Lambert, C. A1 - Fischer, I. A1 - Resch-Genger, Ute T1 - Highly fluorescent open-shell NIR dyes: the time-dependence of back electron transfer in triarylamine-perchlorotriphenylmethyl radicals KW - Triarylamine-perchlorotriphenylmethyl radical KW - Dono-acceptor compounds KW - CT state KW - Fluorescence quantum KW - Yield KW - Life time PY - 2009 U6 - https://doi.org/10.1021/jp908425w SN - 1932-7447 SN - 1089-5639 VL - 113 SP - 20958 EP - 20966 PB - Soc. CY - Washington, DC AN - OPUS4-20757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Schüttrigkeit, T. A1 - Franzl, T. A1 - Resch-Genger, Ute T1 - Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions N2 - The commercial availability of stand-alone setups for the determination of absolute photoluminescence quantum yields (φf) in conjunction with the increasing use of integrating sphere accessories for spectrofluorometers is expected to have a considerable influence not only on the characterization of chromophore systems for use in optical and opto-electronic devices, but also on the determination of this key parameter for (bio)analytically relevant dyes and functional luminophores. Despite the huge potential of systems measuring absolute φf values and the renewed interest in dependable data, evaluated protocols for even the most elementary case, the determination of the fluorescence quantum yield of transparent dilute solutions of small organic dyes with integrating sphere methods, are still missing. This encouraged us to evaluate the performance and sources of uncertainty of a simple commercial integrating sphere setup with dilute solutions of two of the best characterized fluorescence quantum yield standards, quinine sulfate dihydrate and rhodamine 101, strongly differing in spectral overlap between absorption and emission. Special attention is dedicated to illustrate common pitfalls of this approach, thereby deriving simple procedures to minimize measurement uncertainties and improve the comparability of data for the broad community of users of fluorescence techniques. KW - Lifetime KW - Fluorescence KW - Luminescence KW - Quantum yield KW - Quantum efficiency KW - Integrating sphere KW - Reabsorption KW - Rhodamine 101 KW - Quinine sulfate dihydrate KW - Method KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy PY - 2010 U6 - https://doi.org/10.1366/000370210791666390 SN - 0003-7028 SN - 1943-3530 VL - 64 IS - 7 SP - 733 EP - 741 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-22089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Resch-Genger, Ute A1 - Licha, K. A1 - Berkemeyer, J. T1 - Suitable Labels for Molecular Imaging - Influence of Dye Hydrophilicity on the Spectroscopic Properties of lgG Conjugates T2 - 23rd Lecture Conference on Photochemistry CY - Potsdam, Germany DA - 2012-10-08 PY - 2012 AN - OPUS4-26967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Resch-Genger, Ute T1 - Structural control of dye-protein binding, aggregation and hydrophilicity in a series of asymmetric cyanines N2 - Aiming at the rational design and the identification of brilliant fluorescent reporters for targeted optical probes and fluorescence assays in biological matrices, we systematically assessed the correlation between dye–protein binding, dye aggregation, and dye hydrophilicity for bioanalytically relevant fluorescent labels. Here, we report on the influence of sulfonic acid groups on dye aggregation and dye–serum protein interactions exemplarily for a family of NIR-emissive cyanine dyes, the DY-67x fluorophores. For highly hydrophobic dyes like DY-675 and DY-676, which show a strong tendency for aggregation in phosphate buffer saline solution, the dye–protein binding constants determined spectroscopically using a 2-state binding model, which considers only protein-bound and unbound dye molecules, can be influenced by the dimerization of the unbound dyes. To consider and quantify this influence, we expanded this common photometric method to a 3-state model that accounts for the presence of dye aggregates in the binding studies. Our results can be exploited for the screening of fluorescent reporters, efficiently providing information on the size of dye–protein interactions and on maximally achievable fluorescence quantum yields in biological systems. KW - Cyanine dye KW - Dye–protein interaction KW - BSA KW - Binding constant KW - Hydrophilicity KW - Aggregation PY - 2014 U6 - https://doi.org/10.1016/j.dyepig.2013.11.027 SN - 0143-7208 SN - 1873-3743 VL - 103 SP - 118 EP - 126 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-30054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Relative and absolute determination of fluorescence quantum yields of transparent samples N2 - Luminescence techniques are among the most widely used detection methods in the life and material sciences. At the core of these methods is an ever-increasing variety of fluorescent reporters (i.e., simple dyes, fluorescent labels, probes, sensors and switches) from different fluorophore classes ranging from small organic dyes and metal ion complexes, quantum dots and upconversion nanocrystals to differently sized fluorophore-doped or fluorophore-labeled polymeric particles. A key parameter for fluorophore comparison is the fluorescence quantum yield (Φf), which is the direct measure for the efficiency of the conversion of absorbed light into emitted light. In this protocol, we describe procedures for relative and absolute determinations of Φf values of fluorophores in transparent solution using optical methods, and we address typical sources of uncertainty and fluorophore class-specific challenges. For relative determinations of Φf, the sample is analyzed using a conventional fluorescence spectrometer. For absolute determinations of Φf, a calibrated stand-alone integrating sphere setup is used. To reduce standard-related uncertainties for relative measurements, we introduce a series of eight candidate quantum yield standards for the wavelength region of ~350–950 nm, which we have assessed with commercial and custom-designed instrumentation. With these protocols and standards, uncertainties of 5–10% can be achieved within 2 h. PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-294202 SN - 1754-2189 SN - 1750-2799 VL - 8 IS - 8 SP - 1535 EP - 1550 PB - Nature Publishing Group CY - Basingstoke AN - OPUS4-29420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Ramírez, A A1 - Crasselt, C A1 - Schmidt, W A1 - Resch-Genger, Ute T1 - Utilizing optical spectroscopy and 2',7'-difluorofluorescein to characterize the early stages of cement hydration N2 - The increasingly sophisticated nature of modern, more environmentally friendly cementitious binders requires a better understanding and control particularly of the complex, dynamic processes involved in the early phase of cement hydration. In-situ monitoring of properties of a constantly changing system over a defined period of time calls for simple, sensitive, fast, and preferably also non-invasive methods like optical spectroscopy KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Flourescin KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Cement KW - Concrete KW - Building material KW - Hydration KW - Process monitoring PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537176 SN - 2050-6120 VL - 10 IS - 1 SP - 2 EP - 13 PB - IOP Science AN - OPUS4-53717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative optical-spectroscopic characterization of luminescent nanomaterials - Photoluminescence Quantum Yields N2 - Accurate and quantitative photoluminescence measurements are mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters as well as for most applications relying on their luminescence features in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. Special emphasis is dedicated to luminescent nanocrystals. T2 - International Workshop on "Emerging Nanomaterials for Displays and SSL" CY - Dresden, Germany DA - 11.11.2021 KW - Nano KW - Nanomaterial KW - Nanocrystal KW - Semiconductor quantum dot KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Brightness KW - NIR KW - SWIR KW - Method KW - Uncertainty KW - Rreference material PY - 2021 AN - OPUS4-53783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Mota Gassó, Berta A1 - Sturm, Heinz A1 - Pauli, Jutta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Influence of effects on nano and micro scale on the rheological performance of cement paste, mortar and concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 25. Workshop und Kolloquium Rheologische Messsungen an Baustoffen CY - Regensburg, Germany DA - 02.03.2016 KW - Rheology KW - Cement KW - Concrete KW - Superplasticizer KW - Nano scale PY - 2016 SN - 978-3-7345-1313-8 SP - 294 EP - 307 PB - tredition CY - Hamburg AN - OPUS4-36862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Weba, Luciana A1 - Silbernagl, Dorothee A1 - Mota Gassó, Berta A1 - Höhne, Patrick A1 - Sturm, Heinz A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Steinborn, Gabriele ED - Khayat, Kamal Henry T1 - Influences of nano effects on the flow phenomena of self-compacting concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as selfcompacting concrete. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 8th International RILEM Symposium on Self-Compacting Concrete CY - Washington, D.C., USA DA - 15.05.2016 KW - Adsorption KW - Analytics KW - Hydration KW - Polycarboxylate ether KW - Rheology PY - 2016 SP - 245 EP - 254 AN - OPUS4-36882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Napp, J. A1 - Pochstein, Marieke A1 - Streng, Julia A1 - Alves, F. A1 - Resch-Genger, Ute T1 - Bright Functional Herceptin Conjugates with a Remarkably High Number of Fluorophores for Optical Imaging T2 - 5th EuCheMS CY - Istanbul, Turkey DA - 2014-08-31 PY - 2014 AN - OPUS4-31849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoetz, U. A1 - Deliolanis, N.C. A1 - Ng, D. A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Kühn, E. A1 - Heuer, S. A1 - Beisker, W. A1 - Köster, R.W. A1 - Zitzelsberger, H. A1 - Caldwell, R.B. T1 - Usefulness of a Darwinian system in a biotechnological application: evolution of optical window fluorescent protein variants under selective pressure N2 - With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model. KW - Fluorescent protein KW - Quantum yield PY - 2014 U6 - https://doi.org/10.1371/journal.pone.0107069 SN - 1932-6203 VL - 9 IS - 9 SP - e107069-1 EP - e107069-12 PB - PubMed Central AN - OPUS4-31976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pauli, Jutta ED - Brahme, A. T1 - Signal-relevant properties of fluorescent labels and optical probes and their determination PY - 2014 SN - 978-0-444-53632-7 U6 - https://doi.org/10.1016//B978-0-444-53632-7.00408-1 VL - 4 SP - Chapter 4.02, 15 EP - 26 PB - Elsevier CY - Amsterdam AN - OPUS4-31433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Brehm, Robert A1 - Resch-Genger, Ute A1 - Hamann, F. A1 - Hilger, A. T1 - Influence of the Dimerization of Fluorescent Dyes on the Spectroscopic Properties of their lgG Conjugates T2 - Molekulare Bildgebung 10 (MOBI10) CY - Seeon-Seebruck, Germany DA - 2010-11-04 PY - 2010 AN - OPUS4-22661 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Brehm, Robert A1 - Spieles, Monika A1 - Hamann, F.M. A1 - Wenzel, M. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Suitable labels for molecular imaging - influence of dye structure and hydrophilicity on the spectroscopic properties of IpG conjugates N2 - Aiming at the design of highly brilliant NIR emissive optical probes, e.g., for in vivo near-infrared fluorescence imaging (NIRF), we studied the absorption and fluorescence properties of the asymmetric cyanines Dy678, Dy681, Dy682, and Dy676 conjugated to the model antibody IgG. The ultimate goal was here to derive general structure–property relationships for suitable NIR fluorescent labels. These Dy dyes that spectrally match Cy5 and Cy5.5, respectively, were chosen to differ in chromophore structure, i.e., in the substitution pattern of the benzopyrylium end group and in the number of sulfonic acid groups. Spectroscopic studies of the free and IgG-bound fluorophores revealed a dependence of the obtained dye-to-protein ratios on dye hydrophilicity and control of the fluorescence quantum yields (Φf) of the IgG conjugates by the interplay of different fluorescence reduction pathways like dye aggregation and fluorescence resonance energy transfer (FRET). Based upon aggregation studies with these dyes, the amount of dye dimers in the IgG conjugates was determined pointing to dye hydrophilicity as major parameter controlling aggregation. To gain further insight into the exact mechanism of dye dimerization at the protein, labeling experiments at different reaction conditions but constant dye-to-protein ratios in the reaction solution were performed. With Dy682 that displays a Φf of 0.20 in PBS and 0.10 for moderate dye-to-protein ratio of 2.5, a low aggregation tendency, and a superior reactivity in IgG labeling, we identified a promising diagnostic tool for the design of NIR fluorescent probes and protein conjugates. KW - In vivo fluorescence imaging KW - NIR fluorophore KW - Fluorescence quantum yield KW - Cyanine KW - IpG KW - Protein labelling KW - Aggregation KW - Homo-FRET PY - 2011 U6 - https://doi.org/10.1021/bc1004763 SN - 1043-1802 SN - 1520-4812 VL - 22 IS - 7 SP - 1298 EP - 1308 PB - ACS Publications CY - Washington, DC AN - OPUS4-24156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields N2 - The photoluminescence quantum yield (Φf) that presents a direct measure for the efficiency of the conversion of absorbed photons into emitted photons is one of the spectroscopic key parameters of functional fluorophores. It determines the suitability of such materials for applications in, for example, (bio)analysis, biosensing, and fluorescence imaging as well as as active components in optical devices. The reborn interest in accurate Φf measurements in conjunction with the controversial reliability of reported Φf values of many common organic dyes encouraged us to compare two relative and one absolute fluorometric method for the determination of the fluorescence quantum yields of quinine sulfate dihydrate, coumarin 153, fluorescein, rhodamine 6G, and rhodamine 101. The relative methods include the use of a chain of Φf transfer standards consisting of several 'standard dye' versus 'reference dye' pairs linked to a golden Φf standard that covers the ultraviolet and visible spectral region, and the use of different excitation wavelengths for standard and sample, respectively. Based upon these measurements and the calibration of the instruments employed, complete uncertainty budgets for the resulting Φf values are derived for each method, thereby providing evaluated standard operation procedures for Φf measurements and, simultaneously, a set of assessed Φf standards. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere PY - 2011 U6 - https://doi.org/10.1021/ac2000303 SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 9 SP - 3431 EP - 3439 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Brehm, Robert A1 - Grabolle, Markus A1 - Hennig, Andreas A1 - Hoffmann, Angelika A1 - Hoffmann, Katrin A1 - Linck, Lena A1 - Lochmann, Cornelia A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Würth, Christian T1 - Funktionelle Chromophor-Systeme, innovative Validierungskonzepte und rückführbare Standards für die fluoreszenzbasierte multiparametrische Bioanalytik N2 - Unter dem Motto „Innovation und Qualitätssicherung in der (Bio)Analytik“ werden in der Arbeitsgruppe Fluoreszenzspektroskopie der BAM, Bundesanstalt für Materialforschung und -prüfung, funktionelle Chromophor-Systeme, einfache Signalverstärkungs- und Multiplexingstrategien sowie innovative Validierungs- und rückführbare Standardisierungskonzepte für verschiedene fluorometrische Messgrößen und Methoden entwickelt. Im Mittelpunkt stehen dabei molekulare Fluorophore, Nanokristalle mit größenabhängigen optischen Eigenschaften (sogenannte Quantenpunkte, QDs) und fluoreszierende Partikel variabler Größe sowie Sonden und Sensormoleküle für neutrale und ionische Analyte und für die Charakterisierung von funktionellen Gruppen. Dabei erfolgen auch methodische Entwicklungen für die Fluoreszenzspektroskopie, die Fluoreszenzmikroskopie, die Milcrofluorometrie, die Sensorik und die Mikroarraytechnologie. Ziele sind u. a. das Design und die Untersuchung von multiplexfähigen selektiven und sensitiven Sonden für die Biomarkeranalytik, die Entwicklung von Methoden zur Charakterisierung der signalrelevanten Eigenschaften dieser Chromophor-Systeme und zur Charakterisierung von funktionellen Gruppen an Oberflächen und ihre Validierung sowie die Entwicklung und Bereitstellung von formatadaptierbaren, flexibel ersetzbaren Standards für die fluoreszenzbasierte Multiparameteranalytik. T2 - 5. Senftenberger Innovationsforum Multiparameteranalytik CY - Senftenberg, Deutschland DA - 10.03.2011 KW - Multiparametric KW - Multiplexing KW - Fluorescence KW - Nanoparticles KW - NIR dyes KW - Surface analysis KW - Quantum yield KW - Quantum dot KW - Lifetime PY - 2011 SP - 86 EP - 108 CY - Senftenberg AN - OPUS4-23635 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Spieles, Monika A1 - Kaiser, W.A. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging N2 - Aiming at the identification of new fluorescent reporters for targeted optical probes, we assessed the application-relevant features of a novel asymmetric cyanine, DY-681, in comparison to the only clinically approved dye indocyanine green (ICG), the golden imaging standard Cy5.5, and the asymmetric cyanine DY-676 successfully exploited by us for the design of different contrast agents. This comparison included the analysis of the spectroscopic properties of the free fluorophores and their thermal stability in aqueous solution as well as their cytotoxic potential. In addition, the absorption and emission features of IgG-conjugated DY-681 were examined. The trimethine DY-681 exhibited spectral features closely resembling that of the pentamethine Cy5.5. Its high thermal stability in phosphate buffer saline (PBS) solution in conjunction with its low cytotoxicity, reaching similar values as determined for Cy5.5 and DY-676, renders this dye more attractive as ICG and, due to its improved fluorescence quantum yield in PBS, also superior to DY-676. Although in PBS, Cy5.5 was still more fluorescent, the fluorescence quantum yields (Φf) of DY-681 and Cy5.5 in PBS containing 5 mass-% bovine serum albumin (BSA) were comparable. Labeling experiments with DY-681 and the model antibody IgG revealed promisingly high Φf values of the bioconjugated dye. KW - Fluorescence KW - Cyanine dye KW - Cytotoxicity KW - Stability KW - In vivo fluorescence imaging KW - Quantum yield KW - Contrast agent KW - Optical probe PY - 2010 U6 - https://doi.org/10.1007/s10895-010-0603-7 SN - 1053-0509 SN - 1573-4994 VL - 20 IS - 3 SP - 681 EP - 693 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-21401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hamann, F. A1 - Brehm, Robert A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Frank, W. A1 - Kaiser, W.A. A1 - Fischer, D. A1 - Resch-Genger, Ute A1 - Hilger, I. T1 - Controlled modulation of serum protein binding and biodistribution of asymmetric cyanine dyes by variation of the number of sulfonate groups N2 - To assess the suitability of asymmetric cyanine dyes for in vivo fluoro-optical molecular imaging, a comprehensive study on the influence of the number of negatively charged sulfonate groups governing the hydrophilicity of the DY-67x family of asymmetric cyanines was performed. Special attention was devoted to the plasma protein binding capacity and related pharmacokinetic properties. Four members of the DY-67x cyanine family composed of the same main chromophore, but substituted with a sequentially increasing number of sulfonate groups (n = 1−4; DY-675, DY-676, DY-677, DY-678, respectively), were incubated with plasma proteins dissolved in phosphate-buffered saline. Protein binding was assessed by absorption spectroscopy, gel electrophoresis, ultrafiltration, and dialysis. Distribution of dye in organs was studied by intraveneous injection of 62 nmol dye/kg body weight into mice (n = 12; up to 180 minutes postinjection) using whole-body near-infrared fluorescence imaging. Spectroscopic studies, gel electrophoresis, and dialysis demonstrated reduced protein binding with increasing number of sulfonate groups. The bovine serum albumin binding constant of the most hydrophobic dye, DY-675, is 18 times higher than that of the most hydrophilic fluorophore, DY-678. In vivo biodistribution analysis underlined a considerable influence of dye hydrophilicity on biodistribution and excretion pathways, with the more hydrophobic dyes, DY-675 and DY-676, accumulating in the liver, followed by strong fluorescence signals in bile and gut owing to accumulation in feces and comparatively hydrophilic DY-678-COOH accumulating in the bladder. Our results demonstrate the possibility of selectively controlling dye-protein interactions and, thus, biodistribution and excretion pathways via proper choice of the fluorophore's substitution pattern. This underlines the importance of structure-property relationships for fluorescent labels. Moreover, our data could provide the basis for the rationalization of future contrast agent developments. PY - 2011 U6 - https://doi.org/10.2310/7290.2011.00005 SN - 1535-3508 SN - 1536-0121 VL - 10 IS - 4 SP - 258 EP - 269 PB - Decker CY - Hamilton, Ont. AN - OPUS4-24311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X. A1 - Pauli, Jutta A1 - Niessner, R. A1 - Resch-Genger, Ute A1 - Knopp, D. T1 - Gold nanoparticle-catalyzed uranine reduction for signal amplification in fluorescent assays for melamine and aflatoxin B1 N2 - A multifunctional fluorescence platform has been constructed based on gold nanoparticle (AuNP)-catalyzed uranine reduction. The catalytic reduction of uranine was conducted in aqueous solution using AuNPs as nanocatalyst and sodium borohydride as reducing reagent, which was monitored by fluorescence and UV-vis spectroscopy. The reaction rate was highly dependent on the concentration, size and dispersion state of AuNPs. When AuNPs aggregated, their catalytic ability decreased, and thereby a label-free fluorescent assay was developed for the detection of melamine, which can be used for melamine determination in milk. In addition, a fluorescent immunoassay for aflatoxin B1 (AFB1) was established using the catalytic reaction for signal amplification based on target-induced concentration change of AuNPs, where AFB1-BSA-coated magnetic beads and anti-AFB1 antibody-conjugated AuNPs were employed as capture and signal probe, respectively. The detection can be accomplished in 1 h and acceptable recoveries in spiked maize samples were achieved. The developed fluorescence system is simple, sensitive and specific, which could be used for the detection of a wide range of analytes. PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-347677 SN - 0003-2654 SN - 1364-5528 VL - 140 IS - 21 SP - 7305 EP - 7312 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-34767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hatami, Soheil A1 - Würth, Christian A1 - Kaiser, Martin A1 - Leubner, S. A1 - Gabriel, S. A1 - Bahrig, L. A1 - Lesnyak, V. A1 - Pauli, Jutta A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Resch-Genger, Ute T1 - Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1-xHgxTe and PbS quantum dots - method- and material-inherent challenges N2 - Bright emitters with photoluminescence in the spectral region of 800–1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φf). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600–1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φf of the organic dyes Itrybe, IR140, and IR26 and several infrared (IR)-emissive Cd1-xHgxTe and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φf of IR26, the most frequently used IR reference dye, to 1.1 × 10-3 in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φf values of IR-emissive nanomaterials and offer guidelines for improved Φf measurements. PY - 2015 U6 - https://doi.org/10.1039/c4nr04608k SN - 2040-3364 SN - 2040-3372 VL - 7 IS - 1 SP - 133 EP - 143 PB - RSC Publ. CY - Cambridge AN - OPUS4-32408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Pochstein, Marieke A1 - Haase, A. A1 - Napp, J. A1 - Luch, A. A1 - Resch-Genger, Ute T1 - Influence of label and charge density on the association of the therapeutic monoclonal antibodies trastuzumab and cetuximab conjugated to anionic fluorophores N2 - The design of bright and functional dye–protein conjugates requires hydrophilic and stable fluorophores with high molar absorption coefficients and high fluorescence quantum yields,which must not be prone to dimerization, as well as conservation of protein function and suppression of protein association. Although many synthetic dyes meet these needs, the influence of dye charge on bioconjugate performance is commonly neglected. This encouraged us to assess the spectroscopic properties, antibody functionality, binding behavior, folding, and association of conjugates of the therapeutic antibodies trastuzumab and cetuximab with the red cyanine dyes S0586, S2381,and 6SIDCC (bearing two, three, and six sulfonate Groups respectively. Our results demonstrate a negligible effect of dye labeling on antibody folding, yet a strong influence of Label charge and density on antibody isoelectric points and association.Especially 6SIDCC decreased strongly the isoelectric points of both antibodies and their heavy or light chains even at low labeling degrees, thus favoring protein association. Although an increasingly negative dye charge reduces Antigen affinity as shown in a competitive immunoassay, all conjugates still bound to cells overexpressing the target of the respective antibody. Obviously, dyes that cause minimum dimerization with a small number of charged groups are best for conjugate brightness, minimum protein association, and strong target binding. This underlines the need to consider dye Charge for the rational design of conjugates with Optimum performance. KW - Fluorophore KW - Antibody KW - 2D gel electrophoresis KW - Isoelectric point KW - Protein association PY - 2016 U6 - https://doi.org/10.1002/cbic.201600299 SN - 1439-7633 SN - 1439-4227 VL - 18 IS - 1 SP - 101 EP - 110 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-38573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the superplasticizer-cement hydration interaction by optical spectroscopy N2 - Chemical admixtures like superplasticizers or stabilizing agents are of ever increasing importance for modern concrete technology. Although such admixtures have meanwhile become common practice in many applications of concrete technology, the understanding of these highly complex systems is still limited and the relevant parameters, which predominantly control the interaction between the superplasticizer and the cement components, have not been identified yet. Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. This encouraged to assess the potential of these methods for the investigation of the interactions that occur at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation and to differentiate between different superplasticizer. T2 - 2. ICCCM CY - Munich, Germany DA - 10.10.2016 KW - Optical spectroscopy KW - Cement hydration PY - 2016 AN - OPUS4-38474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Wycisk, V. A1 - Welker, P. A1 - Justies, A. A1 - Resch-Genger, Ute A1 - Haag, R. A1 - Licha, K. T1 - Glycerol-Based Contrast Agents: A Novel Series of Dendronized Pentamethine Dyes N2 - The synthesis of water-soluble dyes, which absorb and emit in the range between 650 and 950 nm and display high extinction coefficients (ε) as well as high fluorescence quantum yields (Φf), is still a demand for optical imaging. We now present a synthetic route for the preparation of a new group of glycerol-substituted cyanine dyes from dendronized indole precursors that have been functionalized as Nhydroxysuccinimide (NHS) esters. High Φf values of up to 0.15 and extinction coefficients of up to 189 000 L mol−1 cm−1 were obtained for the pure dyes. Furthermore, conjugates of the new dendronized dyes with the antibody cetuximab (ctx) that were directed against the epidermal growth factor receptor (EGFR) of tumor cells could be prepared with dye to protein ratios between 0.3 and 2.2 to assess their potential as imaging probes. For the first time, ctx conjugates could be achieved without showing a decrease in Φf and with an increasing labeling degree that exceeded the value of the pure dye even at a labeling degree above 2. The incorporation of hydrophilically and sterically demanding dendrimers into cyanines prevented dimer formation after covalent conjugation to the antibody. The binding functionality of the resulting ctx conjugates to the EGFR was successfully demonstrated by cell microscopy studies using EGFR expressing cell lines. In summary, the combination of hydrophilic glycerol dendrons with reactive dye labels has been established for the first time and is a promising Approach toward more powerful fluorescent labels with less dimerization. KW - Dye KW - Quantum yield KW - Fluorescence KW - Contrast agent KW - Extinction coefficient PY - 2015 U6 - https://doi.org/10.1021/acs.bioconjchem.5b00097 SN - 1043-1802 VL - 26 SP - 773 EP - 781 PB - ACS Publications CY - Washington AN - OPUS4-38880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the superplasticizer-cement hydration interaction by optical spectroscopy N2 - Nowadays, superplasticizers (SPs) are widely used to increase fluidity and reduce water content in concrete; thus, allowing better workability for final applications. The present study will focus on the hydration effect using comb shape polycarboxylates (PCEs), which are known to allow a very low water/cement ratio (w/c of 0.20) or less.Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules.This encouraged us to assess the potential of these methods, and particularly fluorescence, for the investigation of the interactions that occur at the interface between hydrate surfaces of cement particles and PCE at a very early stage of concrete formation and to differentiate between the impact of PCE’s molecular structures on such interactions. T2 - 2nd International Conference on the Chemistry of Construction Materials CY - Munich, Germany DA - 10.10.2016 KW - Cement KW - Dye KW - Superplasticizers KW - Fluorescence PY - 2016 SN - 978-3-936028-96-6 VL - 50 SP - 260 EP - 263 PB - Gesellschaft Deutscher Chemiker e.V. CY - Frankfurth am Main AN - OPUS4-38881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mota Gassó, Berta A1 - Schmidt, Wolfram A1 - Pauli, Jutta A1 - Sturm, Heinz T1 - Influences of hydration effects on the flow phenomena of concrete with admixtures N2 - Today, chemical admixtures like superplasticisers and stabilising agents are extremely important for modern concrete technology. These agents have meanwhile become common practice in concrete technology, but the understanding within the entire system lags far behind their application. The macroscopic rheology of concrete in the presence of superplasticizers strongly depends upon effects on a much smaller scale such as the hydration of the cement, the adsorption of superplasticizers, and the pore solution chemistry. T2 - 2nd International Conference on the Chemistry of Construction Materials CY - München, Germany DA - 10.10.2016 KW - Rheology KW - Cement KW - Superplasticiser PY - 2016 SN - 978-3-936028-96-6 VL - 50 SP - 276 EP - 279 PB - Gesellschaft Deutscher Chemiker e.V. CY - Frankfurt am Main AN - OPUS4-38849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Schneider, Thomas A1 - Binder, Denny A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Entwicklung von Fluoreszenzquantenausbeutestandards N2 - Lumineszenzmethoden und funktionelle Chromophore erlangten in den letzten Jahren breite Anwendungen in den Material- und Lebenswissenschaften wie z.B. in der medizinischen Diagnostik, der Beleuchtungs- und Displaytechnologie, der Photovoltaik oder im Sicherheitsbereich für die Echtheitskodierung. Entscheidend für eine hohe Effizienz und Nachweisempfindlichkeit funktioneller Chromophore ist eine große Helligkeit bzw. Brillanz. Brillante Stoffe zeichnen sich durch eine hohe Absorption des anregenden Lichtes (messbar über den molaren Extinktionskoeffizienten) aus sowie durch eine effiziente Umwandlung des absorbierten Lichtes in Lumineszenzlicht bzw. durch eine große Photolumineszenzquantenausbeute aus. Die Bestimmung der Schlüsselgröße Fluoreszenzquantenausbeute erfolgt i.a. relativ zu einem Farbstoff bekannter Fluoreszenzquantenausbeute über einen Vergleich der absorptionsgewichteten integralen Fluoreszenzspektren von Probe und Standard. Hierfür werden Referenzmaterialien mit zertifizierten Fluoreszenzquantenausbeuten benötigt, die bislang nicht verfügbar sind. Im folgenden werden die laufenden Forschungsarbeiten an einer Serie an Fluoreszenzquantenausbeutestandard vorgestellt, die im Spektralbereich von 350 nm – 1050 nm emittieren. Diese Materialien können auch zur Überprüfung von Ulbrichtkugelmessplätzen eingesetzt werden. T2 - Colloquium Optical Spectrometry (COSP) CY - Berlin, Germany DA - 27.11.2017 KW - Fluoreszenz KW - Referenzmaterial KW - Quantenausbeute PY - 2017 AN - OPUS4-44095 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Simon, Sebastian A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - C⁠3A passivation with gypsum and hemihydrate monitored by optical spectroscopy N2 - Tricalcium aluminate (C⁠3A) is found with less than 10% wt. of the total composition; however, during hydration, C⁠3A plays an important role in the early hydration of cement in the presence of gypsum as a set retarder. The aim of this investigation is to assess the suitability of optical spectroscopy and a dye-based optical probe to monitor early hydration of C⁠3A in the presence of gypsum and hemihydrate. Optical evaluation was performed using steady-state fluorescence and diffuses reflectance spectroscopy (UV-VisDR). Phase characterization during hydration was done with in-situ X-ray diffraction. UV-VisDR with a cyanine dye probe was used to monitor the formation of metastable phases and was employed together with fluorescence spectroscopy, to follow the Aggregation and disaggregation of the dye during hydration. In conclusion, for the first time, a cyanine dye was identified as a feasible and stable probe to monitor C⁠3A hydration changes in the presence of calcium sulfate. KW - Dye KW - Photoluminescence KW - Fluorescence KW - Reflection spectroscopy KW - Cement KW - Hydration KW - Method development PY - 2020 U6 - https://doi.org/10.1016/j.cemconres.2020.106082 VL - 133 SP - 106082 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Crasselt, Claudia A1 - Artemeva, Elena A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A Spectroscopic Study of the Superplasticizer Effect on Early Cement Hydration N2 - Organic/inorganic mixtures were prepared from ordinary Portland cement (OPC), water (w/c 0.22), a fluorescent dye in aqueous solution (stable at alkaline pH; BAM-I), and two different comb shape polycarboxylates (PCEs), i.e., high charge (PCE-HC) and low charge (PCE-LC), respectively. Rheological and calorimetric measurements were performed prior to optical studies in order to select PCE concentrations. Absorption and fluorescence spectroscopy of the system OPC + BAM-I (CBAM-I) revealed maxima of dye BAM-I located at 645 nm and 663 nm, respectively. In presence of PCE-HC and PCE-LC, these mixtures displayed a small red shift in reflectance and a faster decrease in intensity compared to studies with CBAM-I; however, only slight differences were observed between the different PCEs. With time, all systems exhibited a decrease in intensity of BAM-I in absorption/reflectance and emission. This could be caused by dye adsorption and possibly decomposition when in contact with cement particles or hydration products. T2 - The Sixth International Symposium on Nanotechnology in Construction (NICOM6) CY - Hong Kong, China DA - 02.12.2018 KW - Cement KW - Optical Spectroscopy KW - Dye KW - Hydration PY - 2018 SP - 1 EP - 9 AN - OPUS4-49378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez, Alejandra A1 - Pauli, Jutta A1 - Crasselt, C. A1 - Simon, S. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - The effect of a polycarboxylate ether on C3A / CaSO4.2H2O passivation monitored by optical spectroscopy N2 - Polycarboxylate ethers (PCEs) are widely used in construction, but the exact nature of their interaction with cement is still debated. Aiming at a better understanding of the role of tricalcium Aluminate (C3A) in cement hydration, we assessed the potential of optical spectroscopy in combination with a water-soluble fluorescent organic reporter dye (S0586) to monitor the early hydration of C3A in the presence of 26 wt% CaSO4.2H2O (C3A26G-S) with and without PCE. As optical methods, steady-state fluorescence and diffuse reflectance (UV–VisDR) spectroscopy were employed. Phase characterization and particle size distribution were performed with in-situ X-ray diffraction (in-situ XRD) and dynamic light scattering (DLS). Our results show that fluorescence and UV–VisDR spectroscopy can be used to monitor the formation of metastable phases by the disaggregation of the dye S0586 in a cement paste as well as changes in ettringite formation. Addition of PCE slowed down the disaggregation of the dye as reflected by the corresponding changes of the dyes absorption and fluorescence. This prolonged induction period is a well-known side effect of PCEs and agrees with previous reported calorimetric studies and the Inhibition of gypsum dissolution observed by in-situ XRD. This demonstrates that fluorescence and UV–VisDR spectroscopy together with a suitable optical probe can provide deeper insights into the influence of PCE on C3A-gypsum hydration which could be e.g., utilized as screening method for comparing the influences of different types of PCEs. KW - Fluorescence KW - Cement KW - Nano KW - Particle KW - Optical spectroscopy KW - PCE KW - XRD KW - Calorimetry KW - Monitoring KW - Diffuse KW - Reflection KW - Phase KW - Dye KW - Optical probe KW - Cyanine KW - Sensor KW - Method KW - Analysis PY - 2020 U6 - https://doi.org/10.1016/j.conbuildmat.2020.121856 VL - 270 SP - 121856 PB - Elsevier Ltd. AN - OPUS4-52118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Schneider, Thomas A1 - Resch-Genger, Ute T1 - Determination of the Uncertainty Budgets of the Fluorescence Quantum Yield Values of Certified Standards as New Optical Reference Materials N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and their nondestructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization- and time-dependent instrument specific effects. This hampers the comparability of fluorescence measurements and calls for simple tools for instrument characterization and the quantification of measured fluorescence intensities. Well characterized fluorescence standards for instrument calibration and performance validation (IPV) can be used also to reference fluorescence signals. Of special importance is the reliable and accurate determination of photoluminescence quantum yields (Ф f), that equals the number of emitted per absorbed photons and presents the key performance parameter for emitter efficiency and the comparison of different luminophores. The determination of Ф f is typically done with the aid of so-called quantum yield standards with well-known Ф f values. These standards can also be applied to evaluate integrating sphere setups, which are increasingly being used for absolute measurements of Ф f values. In this respect, division biophotonics of BAM has certificated a set of Ф f standards, which absorb and fluorescence in the wavelength range from 350 to 1100 nm. In the following, the route to Ф f standards with reliable and traceable Ф f values with a complete uncertainty budget will be presented. T2 - Eurachem-Workshop „Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - Uncertainty KW - Fluorescence KW - Quantum yield standard KW - Reference Material PY - 2019 AN - OPUS4-49661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Artemeva, Elena A1 - Ermilov, Eugeny A1 - Crasselt, Claudia A1 - Stroh, Julia A1 - Mota Gasso, Berta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the hydration of superplasticizer-cement pastes with optical spectroscopy N2 - Chemical admixtures like superplasticizers or stabilizing agents are of ever increasing importance for modern concrete technology. Although such admixtures have meanwhile become common practice in many applications of concrete technology, the understanding of these highly complex systems is still limited and the relevant parameters, which predominantly control the interaction between the superplasticizer and the cement components, have not been identified yet. Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. This encouraged us to assess the potential of these methods, and particularly reflectance and fluorescence measurements, for the study of the interactions that occur at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation. Special emphasis is dedicated to search for and identify differences between commonly used superplasticizers. Here, we focus on hydration effects using commercial comb shape polycarboxylate ethers (PCEs) with different charge densities, which are known to allow a very low water/cement ratio (w/c of 0.20 or less) while maintaining good workability. Based upon changes of the intensity of the reflectance and fluorescence signal and spectral effects of a dye, acting as optical reporter, a model for the interactions of dye, PCE molecules and cement nanoparticles in the very first phase of cement hydration is derived T2 - Gesellschaft Deutscher Chemiker-Analytische Chemie-Anakon 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Cement hydration KW - Optical spectroscopy KW - Superplasticizers PY - 2017 AN - OPUS4-39882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements in the UV/vis/NIR/IR N2 - Photoluminescence techniques are amongst the most widely used Tools in the life sciences, with new and exciting applications in medical diagnostics and molecular Imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for Multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from Instrument-dependent effects, which are also time-dependent due to aging of Instrument-components, and difficulties to measure absolute flourescence entensities. Moreover, scattering Systems require Special measurement geometries and the interest in new optical Reporters with Emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material Performance and the rational designg of new flourophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid flourescence Standards for different flourescence paramters including traceable Instrument calibration procedures and the design of integrating spere setups for the absolute measurements of emission spectra and Quantum yields in the wavelength Region of 350 to 1600 nm. Examples are multi-Emitter glasses, spectral flourescence Standards, and quantum yield Standards for the UV/vis/NIR. T2 - Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications III CY - San Francisco, CA, USA DA - 28.01.2017 KW - Fluorescence KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Quantum yield standard KW - Emission standards PY - 2017 SN - 978-1-5106-0539-8 U6 - https://doi.org/10.1117/12.2255728 SN - 0277-786X VL - 10049 SP - 1 PB - Proceedings of SPIE AN - OPUS4-41783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Mota, Berta A1 - Artemeva, E. A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A spectroscopic study of the superplasticizer effect on early cement hydration N2 - Organic/inorganic mixtures were prepared from ordinary Portland cement (OPC), water (w/c 0.22), a fluorescent dye in aqueous solution (stable at alkaline pH; BAM-I), and two different comb shape polycarboxylates (PCEs), i.e., high charge (PCE-HC) and low charge (PCE-LC), respectively. Rheological and calorimetric measurements were performed prior to optical studies in order to select PCE concentrations. Absorption and fluorescence spectroscopy of the system OPC + BAM-I (CBAM-I) revealed maxima of dye BAM-I located at 645 nm and 663 nm, respectively. In presence of PCE-HC and PCE-LC, these mixtures displayed a small red shift in reflectance and a faster decrease in intensity compared to studies with CBAM-I; however, only slight differences were observed between the different PCEs. With time, all systems exhibited a decrease in intensity of BAM-I in absorption/reflectance and emission. This could be caused by dye adsorption and possibly decomposition when in contact with cement particles or hydration products. T2 - 20. Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2018 KW - Optical spectroscopie KW - Cement hydration KW - Dyes PY - 2018 SN - 978-3-00-059950-7 VL - 20 SP - 1 EP - 6 PB - F.A. Finger-Institut für Baustoffkunde CY - Weimar AN - OPUS4-46277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Güttler, Arne A1 - Schneider, Thomas A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Certified Fluorescence Quantum Yield Standards as New Optical Reference Materials N2 - Luminescence techniques are amongst the most commonly used analytical methods in life and material sciences due to their sensitivity and their nondestructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength, polarization and time dependent instrument specific effects, and provide only relative intensities. This hampers the comparability of fluorescence measure-ments and calls for simple tools for instrument characterization and the quantification of measured fluorescence intensities. Well characterized fluorescence standards for instrument calibration and performance validation (IPV) can be used as references for fluorescence signals. Of special importance is the correct determination of photoluminescence quantum yields (QF) (number of emitted per absorbed photons) that provides a direct comparison of the fluorescence efficiency of emitters. Such well characterized standards have been successfully developed by BAM for the relative determination of f values of transparent solutions of molecular and nanoscale emitters in the wavelength range from 350 and 1100 nm and will be soon certified. These standards can also be used to evaluate integrating sphere setups, which are increasingly being used for absolute measurements of QF values. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2091 KW - Fluoreszenz KW - Referenzmaterial PY - 2019 AN - OPUS4-47795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -