TY - JOUR A1 - Wuithschick, M. A1 - Paul, B. A1 - Bienert, Ralf A1 - Sarfraz, A. A1 - Vainio, U. A1 - Sztucki, M. A1 - Kraehnert, R. A1 - Strasser, P. A1 - Rademann, K. A1 - Emmerling, Franziska A1 - Polte, J. T1 - Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding N2 - Metal nanoparticles have attracted much attention due to their unique properties. Size control provides an effective key to an accurate adjustment of colloidal properties. The common approach to size control is testing different sets of parameters via trial and error. The actual particle growth mechanisms, and in particular the influences of synthesis parameters on the growth process, remain a black box. As a result, precise size control is rarely achieved for most metal nanoparticles. This contribution presents an approach to size control that is based on mechanistic knowledge. It is exemplified for a common silver nanoparticle synthesis, namely, the reduction of AgClO4 with NaBH4. Conducting this approach allowed a well-directed modification of this synthesis that enables, for the first time, the size-controlled production of silver nanoparticles 4–8 nm in radius without addition of any stabilization agent. KW - Silver nanoparticles KW - Growth mechanism KW - SAXS KW - Size control KW - Sodium borohydride PY - 2013 U6 - https://doi.org/10.1021/cm401851g SN - 0897-4756 SN - 1520-5002 VL - 25 IS - 23 SP - 4679 EP - 4689 PB - American Chemical Society CY - Washington, DC AN - OPUS4-30194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frisch, M. A1 - Raza, M. H. A1 - Ye, M.-Y. A1 - Sachse, René A1 - Paul, B. A1 - Gunder, R. A1 - Pinna, N. A1 - Kraehnert, R. T1 - ALD-coated mesoporous iridium-titanium mixed oxides: Maximizing iridium utilization for an outstanding OER performance N2 - With the increasing production of renewable energy and concomitant depletion of fossil resources, the demand for efficient water splitting electrocatalysts continues to grow. Iridium (Ir) and iridium oxides (IrOₓ) are currently the most promising candidates for an efficient oxygen evolution reaction (OER) in acidic medium, which remains the bottleneck in water electrolysis. Yet, the extremely high costs for Ir hamper a widespread production of hydrogen (H₂) on an industrial scale. Herein, the authors report a concept for the synthesis of electrode coatings with template-controlled mesoporosity surface-modified with highly active Ir species. The improved utilization of noble metal species relies on the synthesis of soft-templated metal oxide supports and a subsequent shape-conformal deposition of Ir species via atomic layer deposition (ALD) at two different reaction temperatures. The study reveals that a minimum Ir content in the mesoporous titania-based support is mandatory to provide a sufficient electrical bulk conductivity. After ALD, a significantly enhanced OER activity results in dependency of the ALD cycle number and temperature. The most active developed electrocatalyst film achieves an outstanding mass-specific activity of 2622 mA mg(Ir)⁻¹ at 1.60 V(RHE) in a rotating-disc electrode (RDE) setup at 25 °C using 0.5 m H₂SO₄ as a supporting electrolyte. KW - Acidic oxygen evolution reaction KW - Atomic layer deposition KW - Electrocatalysis KW - Iridium oxide KW - Soft-templated mesoporous films PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542651 SN - 2196-7350 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Polte, J. A1 - Bernsmeier, D. A1 - Eckhardt, B. A1 - Paul, B. A1 - Bergmann, A. A1 - Strasser, P. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst N2 - Micro-structured reactors offer excellent mass and heat transport capabilities and can therefore sustain very high reaction rates and space–time-yields also for highly exothermic catalytic reactions. However, such high rates cannot be reached when the reactors are coated or filled with conventional catalysts powders. We present a strategy for the direct synthesis of highly active wall-coated supported catalysts via co-deposition of a pore template (here micelles formed from PEO-b-PPO-b-PEO) and a precursors for the metal oxide (TiCl4) along with a compatible precursor for the active metal (PdCl2). The obtained catalytic coatings possess a template-controlled open pore structure and excellent mechanical stability. Moreover, the active metal is highly dispersed and well-distributed across the coating also at high Pd loadings. The corresponding high activity along with rapid mass transfer enabled by the open pore system results in the best space–time-yields in the gas-phase hydrogenation of butadiene reported so far in literature for a supported catalyst. KW - Titanium oxide films KW - Palladium nanoparticle KW - Wall-coated supported catalysts KW - Template-controlled mesoporous materials KW - Hydrogenation of 1,3-butadiene PY - 2015 U6 - https://doi.org/10.1016/j.apcata.2014.12.044 SN - 0926-860X SN - 1873-3875 VL - 493 SP - 25 EP - 32 PB - Elsevier CY - Amsterdam AN - OPUS4-32465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraehnert, R. A1 - Ortel, Erik A1 - Paul, B. A1 - Eckhardt, B. A1 - Kanis, M. A1 - Liu, R. A1 - Antoniou, A. T1 - Electrochemically dealloyed platinum with hierarchical pore structure as highly active catalytic coating N2 - Micro structured reactors are attractive candidates for further process intensification in heterogeneous catalysis. However, they require catalytic coatings with significantly improved space-time yields compared to traditional supported catalysts. We report the facile synthesis of homogeneous nanocrystalline Pt coatings with hierarchical pore structure by electrochemical dealloying of amorphous sputter-deposited platinum silicide layers. Thickness, porosity and surface composition of the catalysts can be controlled by the dealloying procedure. XPS analysis indicates that the catalyst surface is primarily composed of metallic Pt. Catalytic tests in gas-phase hydrogenation of butadiene reveal the typical activity, selectivity and activation energy of nanocrystalline platinum. However, space time yields are about 13 to 200 times higher than values reported for Pt-based catalysts in literature. The highly open metallic pore structure prevents heat and mass transport limitations allowing for very fast reactions and reasonable stability at elevated temperatures. KW - Pt catalysts KW - Pt–Si layers KW - Scanning Electron Microscopy (SEM) KW - Transmission Electron Microscopy (TEM) KW - pore structure KW - electrochemical dealloying PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351393 SN - 2044-4753 SN - 2044-4761 VL - 5 IS - 1 SP - 206 EP - 216 PB - RSC Publ. CY - Cambridge AN - OPUS4-35139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -