TY - JOUR A1 - Gabriel, Stefan A1 - Steinhoff, R.F. A1 - Pabst, M. A1 - Schwarzinger, C. A1 - Zenobi, R. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Improved analysis of ultra-high molecular mass polystyrenes in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using DCTB matrix and caesium salts N2 - Rationale The ionization of polystyrenes in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is typically achieved by the use of silver salts. Since silver salts can cause severe problems, such as cluster formation, fragmentation of polymer chains and end group cleavage, their substitution by alkali salts is highly desirable. Methods The influence of various cations (Ag+, Cs+ and Rb+) on the MALDI process of polystyrene (PS) mixtures and high mass polystyrenes was examined. The sample preparation was kept as straightforward as possible. Consequently, no recrystallization or other cleaning procedures were applied. Results The investigation of a polystyrene mixture showed that higher molecular polystyrenes could be more easily ionized using caesium, rather than rubidium or silver salts. In combination with the use of DCTB as matrix a high-mass polymer analysis could be achieved, which was demonstrated by the detection of a 1.1 MDa PS. Conclusions A fast, simple and robust MALDI sample preparation method for the analysis of ultra-high molecular weight polystyrenes based on the use of DCTB and caesium salts has been presented. The suitability of the presented method has been validated by using different mass spectrometers and detectors. KW - MALDI KW - Mega-dalton KW - Ionization KW - Caesium KW - Polystyrene KW - DCTB PY - 2015 UR - http://onlinelibrary.wiley.com/doi/10.1002/rcm.7197/full DO - https://doi.org/10.1002/rcm.7197 SN - 0951-4198 SN - 1097-0231 VL - 29 IS - 11 SP - 1039 EP - 1046 PB - Wiley CY - Chichester AN - OPUS4-33191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Panne, Ulrich A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Degradation of MDI-based polyether and polyester-polyurethanes in various environments - Effects on molecular mass and crosslinking N2 - Size-exclusion chromatography (SEC) was used to monitor changes of the molecular masses of thermoplastic polyether – and polyester urethane (TPU) exposed to thermal, hydrolytic, and photo-oxidative (UV) Degradation conditions for several days. The thermal treatment was performed at elevated temperatures (100–200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks. Surprisingly, the influence of oxygen (air) was found to be less distinct. In contrast to that, UV treatment at 25 °C at less than 10% rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than for thermal treatments. The depth of penetration of the UV radiation was estimated using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that esterbased PU in general exhibits a significant higher stability compared to ether-based materials. KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819302363 DO - https://doi.org/10.1016/j.polymertesting.2019.04.028 SN - 0142-9418 VL - 77 SP - 105881, 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-48619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation N2 - Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6 %. For 60 nm sized PSNPs, a larger deviation of 10.6 % between both methods was observed, which is attributed to the lower separation resolution. KW - Nanoparticle KW - A4F KW - Capillary electrophoresis KW - Carboxyl group PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461392 VL - 1626 SP - 461392 PB - Elsevier B.V. AN - OPUS4-51080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles with different coatings using two-dimensional off-line coupling of asymmetrical flow field flow fractionation and capillary electrophoresis N2 - The successful off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) for separation of nanoparticles (NPs) with different surface coatings was shown. We could successfully demonstrate that, in a certain NP size range, hyphenation of both techniques significantly improved the separation of differently coated NPs. Three mixtures of polystyrene nanoparticles (PS-NPs) with comparable core sizes but different coatings (no coating/carboxyl-coated) were studied. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional off-line coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots in case of 20 and 50 nm particle mixtures, whereas the 100 nm NP mixture could not be separated at all. Various factors affecting the separation like hydrodynamic diameter or SDS concentration were discussed. KW - Capillary electrophoresis (CE) KW - Nanoparticles with same nominal diameter KW - Surface coating KW - Two-dimensional off-line coupling KW - Asymmetrical flow field flow fractionation (AF4) PY - 2019 DO - https://doi.org/10.1016/j.chroma.2019.01.056 VL - 1593 SP - 119 EP - 126 PB - Elsevier AN - OPUS4-47363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Virginia A1 - Schulte, Franziska A1 - Rooch, Heidemarie A1 - Feldmann, Ines A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Surface-enhanced Raman scattering with silver nanostructures generated in situ in a sporopollenin biopolymer matrix N2 - Silver nanoparticles were generated based on citrate reduction in the ultrastructure of the sporopollenin biopolymer of Ambrosia artemisiifolia (ragweed) and Secale cereale (rye). The nanoparticles enable the acquisition of SERS spectra and thereby a vibrational characterization of the local molecular structure of sporopollenin. PY - 2011 DO - https://doi.org/10.1039/c0cc05326k SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. VL - 47 IS - 11 SP - 3236 EP - 3238 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-23482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Knappe, Patrick A1 - Panne, Ulrich T1 - MALDI-TOF imaging mass spectrometry of artifacts in 'dried droplet' polymer samples N2 - Matrix-assisted laser desorption/ionization-timeof-flight (MALDI-TOF) imaging of polystyrenes with various molecular masses was applied to study spatial molecular mass distribution of polymers in sample spots prepared by the 'dried droplet' method. When different solvents and target surfaces were examined, a segregation of single homologous polymers was observed depending upon the evaporation rate of the solvent. For the observed Patterns left by the evaporating droplet, a hypothesis is offered taking into account different hydrodynamic interactions and diffusion. The results illustrate that spot preparation using the conventionally 'dried droplet' method is prone to artifacts and should be avoided for reliable and reproducible MALDI mass spectrometry experiments with regards to the Determination of molecular masses and mass distributions. KW - MALDI KW - Mass spectrometry imaging KW - Polymer KW - Droplet PY - 2011 DO - https://doi.org/10.1007/s00216-011-4773-1 SN - 1618-2642 SN - 1618-2650 VL - 401 IS - 1 SP - 127 EP - 134 PB - Springer CY - Berlin AN - OPUS4-24538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Taxonomic relationship of pollen from MALDI TOF MS data using multivariate statistics N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been suggested as a promising tool for the investigation of pollen, but the usefulness of this approach for classification and identification of pollen species has to be proven by an application to samples of varying taxonomic relations. KW - MALDI mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2015 DO - https://doi.org/10.1002/rcm.7207 SN - 0951-4198 SN - 1097-0231 VL - 29 SP - 1145 EP - 1154 PB - Wiley CY - Chichester AN - OPUS4-35296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -