TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, Rudibert A1 - Maiwald, Michael ED - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual cam-paigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The re-sulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via compara-bly straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the ob-tained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - “Click” chemistry KW - Online NMR KW - Online monitoring PY - 2016 SP - 72 EP - 74 AN - OPUS4-38385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - ELISA KW - LC-MS/MS KW - Sulfamethoxazole PY - 2016 U6 - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-38530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled plasma mass spectrometer (HPLC-ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - HPLC KW - Isotope dilution analysis KW - Field flow fractionation KW - Toxicology PY - 2016 U6 - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 PB - Elsevier B.V. AN - OPUS4-38642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich T1 - Forschen - Prüfen - Beraten - Ziele und Aufgaben der Ressortforschung N2 - Der Vortrag gibt einen Überblick die deutsche Ressortforschung. Neben einer Einordnung in das deutsche Wissenschaftssystem werden in einem historischen Überblick die Besonderheiten der Ressortforschung diskutiert. Besonderes Augenmerk wird der Frage gewidmet „Was ist gute Ressortforschung“. Kritisch erscheint besonders die Vereinbarkeit von exzellenter Wissenschaft und seriöser und unabhängiger Politikberatung. T2 - Auftaktveranstaltung des BMVI-Expertennetzwerks Wissen - Können - Handeln CY - BMVI, Berlin, Germany DA - 19.04.2016 KW - Ressortforschung KW - Ressortforschungseinrichtung KW - Wissenschaftliche Politikberatung PY - 2016 AN - OPUS4-37530 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Gornushkin, Igor B. A1 - Riedel, Jens T1 - Chemometric tools for LIBS analysis N2 - LIBS matures to a quantitative method for elemental analysis rather than a qualitative diagnostic tool. Numerous real world applications for bulk and microanalysis profit from instrumental and methodical advances in the last decade. Today, recording of numerous spectra from samples can be done with low experimental efforts and low cost per spectrum. Not surprisingly, LIBS data, with a high spectral resolution and a broad spectral range, become “big data” and can be utilized in different ways beyond elemental analysis. But, what is the generic or best approach for quantitative LIBS analysis? What techniques can be employed to gain new insights into data? Emergent information can arise through data fusion of LIBS data with other data, i.e. orthogonal spectroscopic or other information related to the sample. But are fused data better than data from a single method? This talk will provide an in-depth overview what chemometric tools can do for LIBS. For quantitative analysis, pre-processing tools are essential to improve precision, accuracy, and reproducibility but at the same time their application to data is still based on phenomenological criteria. Multivariate analysis seems to dominate LIBS, but are there drawbacks on using all information from spectra. For different data sets from real applications, the use of multivariate calibration and (un)supervised pattern recognition will be discussed in comparison with reference analytical methods and possible improvements through plasma diagnostics and modelling. T2 - 9th International Confrence on Laser-Indusced Breakdown Spectroscopy (LIBS) CY - Charmonix-Mont-Blanc, France DA - 12.09.2016 KW - Chemometrics KW - Analytical method KW - LIBS PY - 2016 AN - OPUS4-37534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -